Kondycja przedsiębiorstw i ich wzrost na przykładzie spółek wchodzących w skład indeksów WIG i DAX

Autor

DOI:

https://doi.org/10.18778/2391-6478.2.30.02

Słowa kluczowe:

wzrost przedsiębiorstwa, modele dyskryminacyjne, model Altmana

Abstrakt

Cel artykułu / hipoteza: W prezentowanej pracy omówiono problem kondycji przedsiębiorstw wraz z ich wzrostem reprezentowanym przez zysk na akcję, sprzedaż, majątek oraz kapitał własny. Kondycję przedsiębiorstwa na rynku kapitałowym uznaje się za dobrą w momencie osiągnięcia celu biznesowego, jakim jest wzrost wartości, który następuje wraz ze wzrostem zysku na akcję. Zakładamy, że kondycja firm mierzona punktami Z-score Model Altmana jest związana z ich wzrostem, a wskaźniki zastosowane w tym modelu wpływają na wzrost spółek reprezentowany przez wzrost EPS, wzrost sprzedaży, wzrost aktywów i wzrost kapitałów własnych. Badanie zostało prowadzone w dwóch grupach spółek, z których jedna grupa reprezentuje spółki giełdowe tworzące indeks WIG, a druga spółki giełdowe tworzące indeks DAX.

Metodologia: wzrost zysku na akcję jest uważany za miarę tworzenia wartości przedsiębiorstw. Wzrost EPS powinien być powiązany ze wzrostem sprzedaży, aktywów i kapitałów włąsnych zgodnie z teorią wzrostu przedsiębiorstw. Aby ocenić wpływ modelu Z-score Altmana na wzrost EPS, sprzedaży, aktywów i kapitału, zastosowano korelację Pearsona i Spearmana. Ponadto modele logitowe zostały zastosowane do analizy wpływu wskaźników składających się na model Z-score Altmana na wzrost EPS, sprzedaży, aktywów i kapitału.

Wyniki badań: Modele dyskryminacyjne mogą być wykorzystywane do oceny kondycji ekonomicznej przedsiębiorstw, ale interpretacja wyników powinna uwzględniać fakt, że ryzykowne strategie identyfikowane przez modele Z-score Model Altmana jako obarczone dużym ryzykiem bankructwa są związane z wyższym wzrostem zysku na akcję, a co za tym idzie wzrostem wartości.

Pobrania

Brak dostępnych danych do wyświetlenia.

Bibliografia

Ahmed, P., Nanda, S. (2001). Style investing: Incorporating growth characteristics in value stocks. The Journal of Portfolio Management, 27(3), pp. 47–59.
Google Scholar DOI: https://doi.org/10.3905/jpm.2001.319801

Aktas, N., de Bodt, E., Lobez, F., Statnik, J.C. (2012). The information content of trade credit. Journal of Banking and Finance, vol. 36, pp. 1402–1413.
Google Scholar DOI: https://doi.org/10.1016/j.jbankfin.2011.12.001

Altman, E.I. (1968). Financial Ratios, Discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 23, 4, September, pp. 589–609.
Google Scholar DOI: https://doi.org/10.1111/j.1540-6261.1968.tb00843.x

Altman, E.I. (1983). Corporate Financial Distress. A Complete Guide to Predicting, Avoiding, and Dealing with Bankruptcy. Wiley Interscience, John Wiley and Sons.
Google Scholar

Altman, E.I., Hotchkiss, E. (2006). Corporate Credit Scoring-Insolvency Risk Models. In: Corporate Financial Distress and Bankruptcy. New Jersey: Wiley.
Google Scholar DOI: https://doi.org/10.1002/9781118267806

Altman, E.I., Iwanicz-Drozdowska, M., Laitinen, E.K., Suvas, A. (2014). Distressed firm and bankruptcy prediction in an international context: A review and empirical analysis of Altman's Z-score model. Available at SSRN 2536340.
Google Scholar DOI: https://doi.org/10.2139/ssrn.2536340

Altman, E.I., Yen, J., Zhang, L. (2010). Corporate financial distress diagnosis model and application in credit rating for listing firms in China. Frontiers of Computer Science in China, 4(2), pp. 220–236.
Google Scholar DOI: https://doi.org/10.1007/s11704-010-0505-5

Bankole, K.O., Ukolobi, I.O. (2020). Value Relevance of Accounting Information and Share Price in Financial Service Industry. Research Journal of Finance and Accounting, 11(8), pp. 2222–1697.
Google Scholar

Bărbuță-Mișu, N., Madaleno, M. (2020). Assessment of bankruptcy risk of large companies: European countries evolution analysis. Journal of Risk and Financial Management, 13(3).
Google Scholar DOI: https://doi.org/10.3390/jrfm13030058

Beaver, W.H. (1966). „Financial Ratios and Predictors of Failure. Empirical Research in accounting” Selected Studies, Supplement: Journal of Accounting Research.
Google Scholar DOI: https://doi.org/10.2307/2490171

Chava, S., Jarrow, R.A. (2004). Bankruptcy prediction with industry effects. Review of Finance, 8, pp. 537–569.
Google Scholar DOI: https://doi.org/10.1093/rof/8.4.537

Czerwińska, A., Michna, A., Męczyńska, A. (2013). Determinanty rozwoju małych i średnich przedsiębiorstw sektora budowlanego. Zarządzanie i Finanse, 4(2), Fundacja Rozwoju Uniwersytetu Gdańskiego, pp. 79–80.
Google Scholar

Danbolt, J., Hirst, I.R., Jones, E. (2011). The growth companies puzzle: Can growth opportunities measures predict firm growth? The European Journal of Finance, 17(1), pp. 1–25.
Google Scholar DOI: https://doi.org/10.1080/13518470903448432

Delmar, F. (2006). Measuring growth: Methodological considerations and empirical results. Entrepreneurship and the Growth of Firms, 1(1), pp. 62–84.
Google Scholar

El Khoury, R., Al Beaïno, R. (2014). Classifying manufacturing firms in Lebanon: An application of Altman’s model. Procedia-Social and Behavioral Sciences, 109(1), pp. 11–18.
Google Scholar DOI: https://doi.org/10.1016/j.sbspro.2013.12.413

Fitzpatrick, P.J. (1932). A comparison of ratios of successful industrial enterprises with those of failed firms. Certified Public Accountant, 12.
Google Scholar

Franc-Dąbrowska, J., Zbrowska, M. (2008). Prognozowanie finansowe dla spółki X – spółka logistyczna. Zeszyty Naukowe SGGW w Warszawie. Ekonomika i Organizacja Gospodarki Żywnościowej, Warszawa: Wydawnictwo SGGW.
Google Scholar

Franzen, L.A., Rodgers, K.J., Simin, T.T. (2007). Measuring distress risk: The effect of RandD intensity. The Journal of Finance, 62, 6, pp. 2931–2967.
Google Scholar DOI: https://doi.org/10.1111/j.1540-6261.2007.01297.x

Grice, J.S., Ingram, R.W. (2001). Tests of the generalizability of Altman’s bankruptcy prediction model. Journal of Business Research, 54, pp. 53–61.
Google Scholar DOI: https://doi.org/10.1016/S0148-2963(00)00126-0

Griffin, J.M., Lemmon, M.L. (2002). Book-to-market equity, distress risk, and stock returns. The Journal of Finance, 57(5), pp. 2317–2336.
Google Scholar DOI: https://doi.org/10.1111/1540-6261.00497

Hadasik, D. (1998). Upadłość przedsiębiorstw w Polsce i metody jej prognozowania. Wydawnictwo Akademii Ekonomicznej w Poznaniu.
Google Scholar

Holder-Webb, L.M., Wilkins, M.S. (2000). The incremental information content of SAS No. 59. Goingconcern opinions. Journal of Accounting Research, 38(1), pp. 209–219.
Google Scholar DOI: https://doi.org/10.2307/2672929

Kanapickiene, R., Spicas, R. (2019). Credit risk assessment model for small and micro-enterprises: The case of Lithuania. Risks, 7(2).
Google Scholar DOI: https://doi.org/10.3390/risks7020067

Kasiewicz, S. (1996). Systemy wczesnego ostrzegania w bankowym funduszu gwarancyjnym (BGF), Restrukturyzacja w procesie przekształceń i rozwoju przedsiębiorstw. Kraków: Wydawnictwa Akademii Ekonomicznej w Krakowie.
Google Scholar

Kumar, P.R., Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques – A review. European Journal of Operational Research, 85.
Google Scholar

Kwak, W., Shi, Y., Cheh, J.J., Lee, H. (2005). Multiple criteria linear programming data mining approach: An application for bankruptcy prediction. Data Mining and Knowledge Management. Lecture Notes in Computer Science, 3327, pp. 164–173.
Google Scholar DOI: https://doi.org/10.1007/978-3-540-30537-8_18

Lyandres, E., Zhdanov, A. (2013). Investment opportunities and bankruptcy prediction. Journal of Financial Markets, 16, pp. 439–476.
Google Scholar DOI: https://doi.org/10.1016/j.finmar.2012.10.003

Merkevicius, E., Garšva, G., Girdzijauskas, S. (2006). A hybrid SOM-Altman model for bankruptcy prediction. International Conference on Computational Science. Lecture Notes in Computer Science, 3994, pp. 364–371.
Google Scholar DOI: https://doi.org/10.1007/11758549_53

Ohlson, J.A., Juettner-Nauroth, B.E. (2005). Expected EPS and EPS growth as determinantsof value. Review of accounting studies, 10(2), pp. 349–365.
Google Scholar DOI: https://doi.org/10.1007/s11142-005-1535-3

Ohlson, J.A. (2017). Valuation and growth. Available at SSRN 2983031.
Google Scholar DOI: https://doi.org/10.2139/ssrn.2983031

Ooghe, H., Balcaen, S. (2007). Are failure prediction models widely usable? An empirical study using a Belgian dataset. Multinational Finance Journal, 11(1/2), pp. 33–76.
Google Scholar DOI: https://doi.org/10.17578/11-1/2-2

Piotroski, J.D. (2000). Value investing: The use of historical financial statement information to separate winners from losers. Journal of Accounting Research, 38, Supplement: Studies on accounting information and the economics of the firm, pp. 1–41.
Google Scholar DOI: https://doi.org/10.2307/2672906

Reisz, A.S., Perlich, C. (2007). A market-based framework for bankruptcy prediction. Journal of Financial Stability, 3, pp. 85–131.
Google Scholar DOI: https://doi.org/10.1016/j.jfs.2007.02.001

Siekelova, A., Kovalova, E., Ciurlău, C.F. (2019). Prediction financial stability of Romanian production companies through Altman Z-score. Ekonomicko-manazerske spektrum, 13(2), pp. 89–97.
Google Scholar DOI: https://doi.org/10.26552/ems.2019.2.89-97

Vochozka, M., Vrbka, J., Suler, P. (2020). Bankruptcy or success? The effective prediction of a company’s financial development using LSTM. Sustainability, 12(18).
Google Scholar DOI: https://doi.org/10.3390/su12187529

Waśniewski, T., Skoczylas, W. (1993). Analiza symptomów zagrożenia przedsiębiorstwa. Rachunkowość, 12.
Google Scholar

Weinzimmer, L.G., Nystrom, P.C., Freeman, S.J. (1998). Measuring organizational growth: Issues, consequences and guidelines. Journal of management, 24(2), pp. 235–262.
Google Scholar DOI: https://doi.org/10.1177/014920639802400205

Witkowska, D., Kuźnik, P. (2019). Does fundamental strength of the company influence its investment performance? Dynamic Econometric Models, 19, pp. 85–96.
Google Scholar

Xu, M., Zhang, C. (2009). Bankruptcy prediction: The case of Japanese listed companies. Review of Accounting Studies, 14, pp. 534–558.
Google Scholar DOI: https://doi.org/10.1007/s11142-008-9080-5

Zaleska, M. (2002). Identyfikacja ryzyka upadłości przedsiębiorstwa i banku, Warszawa: Difin.
Google Scholar

Opublikowane

2021-06-30

Jak cytować

Bolek, M., & Gniadkowska-Szymańska, A. (2021). Kondycja przedsiębiorstw i ich wzrost na przykładzie spółek wchodzących w skład indeksów WIG i DAX. Finanse I Prawo Finansowe, 2(30), 25–44. https://doi.org/10.18778/2391-6478.2.30.02

Numer

Dział

Artykuł

Inne teksty tego samego autora