Czy oni tworzą sztuczną inteligencję? (Re)konstrukcja działania podstawowego w data science
DOI:
https://doi.org/10.18778/1733-8069.20.4.09Słowa kluczowe:
społeczne światy, działanie podstawowe, sztuczna inteligencja, data scienceAbstrakt
Data science (DS) zajmuje się budowaniem tzw. sztucznej inteligencji, czyli systemów komputerowych automatyzujących zadania na podstawie danych historycznych. Niniejszy artykuł jest pierwszą próbą zbadania DS z zastosowaniem ramy teoretycznej światów społecznych Adele E. Clarke. Głównym celem opracowania jest przedstawienie (re)konstrukcji działania podstawowego na przykładzie świata społecznego DS w Polsce. Refleksja metodologiczna nad tą (re)konstrukcją jest słabo rozwiniętym elementem badań nad światami społecznymi; niniejszy artykuł stara się ten proces wyeksplikować. Podstawą empiryczną jest trzyletnie badanie etnograficzne, przeprowadzone zgodnie z podejściem analizy sytuacyjnej Clarke. Wyniki metodologiczne prezentują niezbędność etnografii opartej na współpracy w (re)konstruowaniu działania podstawowego oraz znaczenie namacalnych elementów jako kluczowych dla zrozumienia tego działania. Substancjalne wyniki koncentrują się na spostrzeżeniu, że osoby zajmujące się data science nie określają swego działania z użyciem pojęcia sztucznej inteligencji.
Pobrania
Bibliografia
Alekseichenko Vladimir (2019a), 10 właściwych pytań przy wdrażaniu uczenia maszynowego, https://biznesmysli.pl/10-wlasciwych-pytan-przy-wdrazaniu-uczenia-maszynowego/ [accessed: 30.04.2019].
Google Scholar
Alekseichenko Vladimir (2019b), The difference between AI vs ML, https://www.linkedin.com/feed/update/urn:li:activity:6501030890754314240/ [accessed: 4.05.2019].
Google Scholar
Anderson Leon (2006), Analytic Autoethnography, “Journal of Contemporary Ethnography”, vol. 35(4), pp. 373–395, https://doi.org/10.1177/0891241605280449
Google Scholar
DOI: https://doi.org/10.1177/0891241605280449
Andrus Calvin, Cook Jon, Sood Suresh (2017), Data Science: An Introduction, https://en.wikibooks.org/wiki/Data_Science:_An_Introduction [accessed: 21.03.2018].
Google Scholar
Angrosino Michael (2010), Badania etnograficzne i obserwacje, Warszawa: Wydawnictwo Naukowe PWN.
Google Scholar
Azam Anum (2014), The First Rule of Data Science, “Berkeley Science Review”, 27.04.2014, https://web.archive.org/web/20170922061629/https://berkeleysciencereview.com/article/first-rule-data-science/ [accessed: 26.01.2018].
Google Scholar
Baiju Nt (2014), What is a data scientist? 14 definitions of a data scientist!, https://web.archive.org/web/20171207002047/https://bigdata-madesimple.com/what-is-a-data-scientist-14-definitions-of-a-data-scientist/ [accessed: 11.01.2018].
Google Scholar
Batorski Dominik, Grzywińska Ilona (2018) Three dimensions of the public sphere on Facebook, “Information Communication and Society”, vol. 21(3), pp. 356–374, https://doi.org/10.1080/1369118X.2017.1281329
Google Scholar
DOI: https://doi.org/10.1080/1369118X.2017.1281329
Becker Howard S. (1953), Becoming a Marihuana User, “The American Journal of Sociology”, vol. 59(3), pp. 235–242.
Google Scholar
DOI: https://doi.org/10.1086/221326
Biecek Przemysław (2015), Pogromcy Danych. Przetwarzanie danych w programie R, https://web.archive.org/web/20161205211608/http://pogromcydanych.icm.edu.pl/ [accessed: 28.12.2016].
Google Scholar
Big Data Borat (2013), @BigDataBorat: Data Science Is Statistics on Mac, https://twitter.com/bigdataborat/status/372350993255518208 [accessed: 19.02.2018].
Google Scholar
Boyd Danah, Crawford Kate (2011), Six Provocations for Big Data, “SSRN Electronic Journal”, s. 1–17, https://doi.org/10.2139/ssrn.1926431
Google Scholar
DOI: https://doi.org/10.2139/ssrn.1926431
Cao Longbing (2017), Data Science: A Comprehensive Overview, “ACM Computing Surveys”, vol. 50(3), pp. 1–42, https://doi.org/10.1145/3076253
Google Scholar
DOI: https://doi.org/10.1145/3076253
Charmaz Kathy (2006), Constructing grounded theory, London: Sage Publications.
Google Scholar
Clarke Adele E. (1997), A Social Worlds Research Adventure: The Case of Reproductive Science, [in:] Anselm L. Strauss, Juliet Corbin (eds.), Grounded Theory in Practice, Thousand Oaks: Sage Publications, pp. 63–94.
Google Scholar
Clarke Adele E. (2003), Situational Analyses: Grounded Theory Mapping After the Postmodern Turn, “Symbolic Interaction”, vol. 26(4), pp. 553–576.
Google Scholar
DOI: https://doi.org/10.1525/si.2003.26.4.553
Clarke Adele E. (2005), Situational Analysis. Grounded Theory After the Postmodern Turn, London: Sage Publications.
Google Scholar
Clarke Adele E. (2015), From Grounded Theory to Situational Analysis. What’s New? Why? How?, [in:] Adele E. Clarke, Carrie Friese, Rachel S. Washburn (eds.), Situational Analysis in Practice. Mapping Research with Grounded Theory, Walnut Creek: Left Coast Press Inc., pp. 84–118.
Google Scholar
Clarke Adele E., Star Susan Leigh (2008), The Social Worlds Framework: A Theory/Method Package, [in:] Edward J. Hackett, Olga Amsterdamska, Michael Lynch, Judy Wajcman (eds.), The Handbook of Science and Technology Studies, Cambridge–London: The MIT Press, pp. 113–158.
Google Scholar
Clarke Adele E., Friese Carrie, Washburn Rachel S. (2015), Introducing Situational Analysis, [in:] Adele E. Clarke, Carrie Friese, Rachel S. Washburn (eds.), Situational Analysis in Practice. Mapping Research with Grounded Theory, Walnut Creek: Left Coast Press Inc., pp. 11–75.
Google Scholar
DOI: https://doi.org/10.4324/9781315420134
Clarke Adele E., Friese Carrie, Washburn Rachel S. (2017), Situational Analysis: Grounded Theory After the Interpretive Turn, Los Angeles: Sage Publications.
Google Scholar
Cleveland William S. (2001), Data Science: An Action Plan for Expanding the Technical Areas of the Field of Statistics, “International Statistical Review”, vol. 69(1), pp. 21–26, https://doi.org/10.1111/j.1751-5823.2001.tb00477.x
Google Scholar
DOI: https://doi.org/10.1111/j.1751-5823.2001.tb00477.x
Collins Harry M., Evans Robert (2002), The Third Wave of Science Studies: Studies of Expertise and Experience, “Social Studies of Science”, vol. 32(2), pp. 235–296, https://doi.org/10.1177/0306312702032002003
Google Scholar
DOI: https://doi.org/10.1177/0306312702032002003
Conway Drew (2010), The Data Science Venn Diagram, https://web.archive.org/web/20110225163125/http://www.dataists.com/2010/09/the-data-science-venn-diagram/ [accessed: 18.02.2018].
Google Scholar
Crawford Kate (2021), Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence, New Haven: Yale University Press.
Google Scholar
DOI: https://doi.org/10.12987/9780300252392
CrowdFlower (2017), 2017 Data Scientist Report, https://visit.crowdflower.com/rs/416-ZBE-142/images/data-scientist-report-dec.pdf [accessed: 11.02.2018].
Google Scholar
Dalton Craig M., Taylor Linnet, Thatcher Jim (2016), Critical Data Studies: A dialog on data and space, “Big Data & Society”, vol. 3(1), https://doi.org/10.1177/2053951716648346
Google Scholar
DOI: https://doi.org/10.1177/2053951716648346
Davenport Thomas H., Patil D.J. (2012), Data Scientist: The Sexiest Job of the 21st Century, “Harvard Business Review”, https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century [accessed: 3.10.2016].
Google Scholar
Dean Jeff (2019), Deep Learning to Solve Challenging Problems (Google I/O’19), https://www.youtube.com/watch?v=rP8CGyDbxBY [accessed: 11.06.2019].
Google Scholar
Delapenha Lauren (2017), 42 Essential Quotes by Data Science Thought Leaders, https://www.kdnuggets.com/2017/05/42-essential-quotes-data-science-thought-leaders.html [accessed: 6.02.2018].
Google Scholar
Desai Jules, Watson David, Wang Vincent, Taddeo Mariarosaria, Floridi Luciano (2022), The epistemological foundations of data science: a critical analysis, “SSRN Electronic Journal”, pp. 1–26, https://doi.org/10.2139/ssrn.4008316
Google Scholar
DOI: https://doi.org/10.2139/ssrn.4008316
Dijck José van (2014), Datafication, dataism and dataveillance: Big Data between scientific paradigm and ideology, “Surveillance and Society”, vol. 12(2), pp. 197–208, https://doi.org/10.24908/ss.v12i2.4776
Google Scholar
DOI: https://doi.org/10.24908/ss.v12i2.4776
Donoho David (2017), 50 Years of Data Science, “Journal of Computational and Graphical Statistics”, vol. 26(4), pp. 745–766, https://doi.org/10.1080/10618600.2017.1384734
Google Scholar
DOI: https://doi.org/10.1080/10618600.2017.1384734
Doran Derek (2018), Data Scientist, [in:] Laurie A. Schintler, Connie L. McNeely (eds.), Encyclopedia of Big Data, Cham: Springer International Publishing, pp. 1–4, https://doi.org/10.1007/978-3-319-32001-4_61-1
Google Scholar
DOI: https://doi.org/10.1007/978-3-319-32001-4_61-1
Elish M.C., Boyd Danah (2018), Situating methods in the magic of Big Data and AI, “Communication Monographs”, vol. 85(1), pp. 57–80, https://doi.org/10.1080/03637751.2017.1375130
Google Scholar
DOI: https://doi.org/10.1080/03637751.2017.1375130
Gallopoulos Efstratios, Houstis Elias, Rice J.R. (1994), Computer as thinker/doer: problem-solving environments for computational science, “IEEE Computational Science and Engineering”, vol. 1(2), pp. 11–23, https://doi.org/10.1109/99.326669
Google Scholar
DOI: https://doi.org/10.1109/99.326669
Gerson Elihu M. (1983), Scientific Work and Social Worlds, “Knowledge: Creation, Diffusion, Utilization”, vol. 4(3), pp. 357–377.
Google Scholar
DOI: https://doi.org/10.1177/107554708300400302
Gold Raymond L. (1958), Roles in Sociological Field Observations, “Social Forces”, vol. 36(3), pp. 217–223, https://doi.org/10.2307/2573808
Google Scholar
DOI: https://doi.org/10.2307/2573808
Goodfellow Ian, Bengio Yoshua, Courville Aaron (2016), Deep Learning, http://www.deeplearningbook.org/ [accessed: 5.11.2017].
Google Scholar
Granville Vincent (2014), 16 analytic disciplines compared to data science, https://web.archive.org/web/20140808055923/http://www.datasciencecentral.com/group/resources/forum/topics/16-analytic-disciplines-compared-to-data-science [accessed: 2.01.2017].
Google Scholar
Grommé Francisca, Ruppert Evelyn, Cakici Baki (2018), Data scientists: a new faction of the transnational field of statistics, [in:] Hannah Knox, Dawn Nafus (eds.), Ethnography for a data-saturated world, Manchester: Manchester University Press, pp. 33–61.
Google Scholar
DOI: https://doi.org/10.7765/9781526127600.00009
Hughes Everet C. (1958), Men and Their Work, London: The Free Press.
Google Scholar
Hyndman Rob (2014), Am I a data scientist?, https://robjhyndman.com/hyndsight/am-i-a-data-scientist/ [accessed: 5.01.2018].
Google Scholar
Iwasiński Łukasz (2020), Theoretical Bases of Critical Data Studies, “Zagadnienia Informacji Naukowej – Studia Informacyjne”, vol. 58(1A(115A)), pp. 96–109, https://doi.org/10.36702/zin.726
Google Scholar
DOI: https://doi.org/10.36702/zin.726
Jarvis Jeremy (2014), @jeremyjarvis: A Data Scientist Is a Statistician Who Lives in San Francisco, https://twitter.com/jeremyjarvis/status/428848527226437632 [accessed: 7.12.2017].
Google Scholar
Jesionek Robert (2017), Uczenie maszynowe i sztuczna inteligencja w opiniach polskich CIO, https://digitalandmore.pl/uczenie-maszynowe-i-sztuczna-inteligencja-w-opiniach-polskich-cio/ [accessed: 24.04.2018].
Google Scholar
Junker Buford H. (1960), Field Work: An Introduction to the Social Sciences, Chicago: University of Chicago Press.
Google Scholar
Kacperczyk Anna (2016), Społeczne światy. Teoria – empiria – metody badań: na przykładzie społecznego świata wspinaczki, Łódź: Wydawnictwo Uniwersytetu Łódzkiego.
Google Scholar
DOI: https://doi.org/10.18778/7969-714-4
Kaggle (2017), 2017: The State of Data Science & Machine Learning, https://web.archive.org/web/20180222175627/https://www.kaggle.com/surveys/2017 [accessed: 27.03.2018].
Google Scholar
Kitchin Rob (2014), Big Data, new epistemologies and paradigm shifts, “Big Data & Society”, vol. 1(1), pp. 1–12, https://doi.org/10.1177/2053951714528481
Google Scholar
DOI: https://doi.org/10.1177/2053951714528481
Kling Rob, Gerson Elihu M. (1978), Patterns of Segmentation and Intersection in the Computing World, “Symbolic Interaction”, vol. 1(2), pp. 24–43, https://doi.org/10.1525/si.1978.1.2.24
Google Scholar
DOI: https://doi.org/10.1525/si.1978.1.2.24
Konecki Krzysztof (2020), Uwagi na temat tego, co jest postrzegane jako ważne i nieważne w socjologii, “Przegląd Socjologii Jakościowej”, vol. XVI, no. 2, pp. 188–207, https://doi.org/10.18778/1733-8069.16.2.11
Google Scholar
DOI: https://doi.org/10.18778/1733-8069.16.2.11
Kozinets Robert V. (2003), The Field behind the Screen: Using Netnography for Marketing Research in Online Communities, “Journal of Marketing Research”, vol. 39(1), pp. 61–72, https://doi.org/10.1509/jmkr.39.1.61.18935
Google Scholar
DOI: https://doi.org/10.1509/jmkr.39.1.61.18935
Krzysztofek Kazimierz (2015), Technologie cyfrowe w dyskursach o przyszłości pracy, “Studia Socjologiczne”, vol. 4(219), pp. 5–31, https://journals.pan.pl/Content/91277/mainfile.pdf [accessed: 2.11.2018].
Google Scholar
Kuncewicz Łukasz (2019), Lukasz Kuncewicz on LinkedIn: „Data Science Job Interview – How the Questions Will Change in 5 Years?, https://www.linkedin.com/feed/update/urn:li:activity:6556607403457155074 [accessed: 31.07.2019].
Google Scholar
Laney Douglas (2001), 3-D Data Management: Controlling Data Volume, Velocity and Variety, https://web.archive.org/web/20120813181324/https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf [accessed: 14.03.2016].
Google Scholar
Lanthier Mark (2011), An Introduction to Computer Science and Problem Solving, [in:] Mark Lanthier (ed.), COMP 1405, Ottawa: Carleton University, pp. 1–38.
Google Scholar
Lassiter Luke Eric (2005), The Chicago Guide to Collaborative Ethnography, Chicago–London: The University of Chicago Press.
Google Scholar
DOI: https://doi.org/10.7208/chicago/9780226467016.001.0001
Lohr Steve (2009), For Today’s Graduate, Just One Word: Statistics, “The New York Times”, http://www.nytimes.com/2009/08/06/technology/06stats.html [accessed: 15.02.2018].
Google Scholar
Loukides Mike (2010), What is data science?, https://www.oreilly.com/ideas/what-is-data-science [accessed: 8.09.2016].
Google Scholar
Lowrie Ian (2016), Caring for Computers: How Russian Data Scientists Refashion Their Laptops, “Anthropology Now”, vol. 8(2), pp. 25–33, https://doi.org/10.1080/19428200.2016.1202578
Google Scholar
DOI: https://doi.org/10.1080/19428200.2016.1202578
Lowrie Ian (2017), Algorithmic rationality: Epistemology and efficiency in the data sciences, “Big Data & Society”, vol. 4(1), pp. 1–13, https://doi.org/10.1177/2053951717700925
Google Scholar
DOI: https://doi.org/10.1177/2053951717700925
Lowrie Ian (2018), Becoming a Real Data Scientist. Expertise, Flexibility and Lifelong Learning, [in:] Hannah Knox, Dawn Nafus (eds.), Ethnography for a data-saturated world, Manchester: Manchester University Press, pp. 62–81.
Google Scholar
DOI: https://doi.org/10.7765/9781526127600.00010
Marcus George E. (1995), Ethnography in/of the World System: The Emergence of Multi-Sited Ethnography, “Annual Review of Anthropology”, vol. 24, pp. 95–117.
Google Scholar
DOI: https://doi.org/10.1146/annurev.anthro.24.1.95
Martin Vivian B. (2006), The Postmodern Turn: Shall Classic Grounded Theory Take That Detour? A Review Essay, “The Grounded Theory Review”, vol. 5(2/3), pp. 119–129.
Google Scholar
Mead George H. (1972), The Philosophy of the Act, Chicago: University of Chicago Press.
Google Scholar
Naur Peter (1974), Concise Survey of Computer Methods, Lund: Studentlitteratur.
Google Scholar
Nowosad Jakub (2019), Elementarz programisty. Wstęp do programowania używając R, Poznań: Space A., https://jakubnowosad.com/elp/ [accessed: 16.03.2020].
Google Scholar
Nunns James (2017), How Python rose to the top of the data science world, “Computer Business Review”, https://www.techmonitor.ai/technology/data/python-rose-top-data-science-world [accessed: 2.10.2018]
Google Scholar
O’Neil Cathy, Schutt Rachel (2015), Badanie danych: raport z pierwszej linii działań, Gliwice: Wydawnictwo Helion.
Google Scholar
Plummer Ken (2012), My Multiple Sick Bodies: Symbolic Interactionism, Autoethnography and Embodiment, [in:] Bryan S. Turner (ed.), Routledge Handbook of Body Studies, New York: Routledge, pp. 75–93.
Google Scholar
R Core Team (2021), R: A Language and Environment for Statistical Computing, https://www.r-project.org/ [accessed: 3.12.2021].
Google Scholar
Schoenfeld Alan H. (1992), Learning to Think Mathematically: Problem Solving, Metacognition, and Sense Making in Mathematics, [in:] Douglas Grouws (ed.), Handbook of Research on Mathematics Teaching and Learning, New York: Macmillan Publishers Limited, pp. 334–370.
Google Scholar
Seim Josh (2021), Participant Observation, Observant Participation, and Hybrid Ethnography, “Sociological Methods & Research”, vol. 53(1), pp. 1–32, https://doi.org/10.1177/0049124120986209
Google Scholar
DOI: https://doi.org/10.1177/0049124120986209
Shaw Zed A. (2014), Learn Python the Hard Way: A Very Simple Introduction to the Terrifyingly Beautiful World of Computers and Code, Donnelley: Addison-Wesley.
Google Scholar
Shibutani Tamotsu (1955), Reference Groups as Perspectives, “American Journal of Sociology”, vol. 60(6), pp. 562–569, https://doi.org/10.1086/221630
Google Scholar
DOI: https://doi.org/10.1086/221630
St. Germain James H. de (2008), Problem Solving, https://www.cs.utah.edu/~germain/PPS/Topics/problem_solving.html [accessed: 27.01.2019].
Google Scholar
Strauss Anselm L. (1978), A Social World Perspective, [in:] Norman Denzin (ed.), Studies in Symbolic Interaction, vol. 1, Greenwitch: JAI Press, pp. 119–128.
Google Scholar
Strauss Anselm L. (1982), Social Worlds and Legitimation Processes, [in:] Norman Denzin (ed.), Studies in Symbolic Interaction, vol. 4, Greenwitch: JAI Press, pp. 171–190.
Google Scholar
Strauss Anselm L. (1984), Social Worlds and Their Segmentation Processes, [in:] Norman Denzin (ed.), Studies in Symbolic Interaction, vol. 5, Greenwitch: JAI Press, pp. 123–139.
Google Scholar
Taylor David (2016), Battle of the Data Science Venn Diagrams, https://web.archive.org/web/20170428061035/https://www.kdnuggets.com/2016/10/battle-data-science-venn-diagrams.html [accessed: 14.12.2017].
Google Scholar
Thieme Nick (2018), R generation, “Significance”, vol. 15(4), pp. 14–19, https://doi.org/10.1111/j.1740-9713.2018.01169.x
Google Scholar
DOI: https://doi.org/10.1111/j.1740-9713.2018.01169.x
Thomas Suzanne L., Nafus Dawn, Sherman Jamie (2018), Algorithms as fetish: Faith and possibility in algorithmic work, “Big Data & Society”, vol. 5(1), pp. 1–11, https://doi.org/10.1177/2053951717751552
Google Scholar
DOI: https://doi.org/10.1177/2053951717751552
Trzpiot Grażyna (2017), Rozumienie Data Science, [in:] Grażyna Trzpiot (ed.), Statystyka a Data Science, Katowice: Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach, pp. 6–30.
Google Scholar
Tufekci Zeynep (2015), Algorithmic Harms Beyond Facebook and Google: Emergent Challenges of Computational Agency, “Telecomm & High Tech”, vol. 203, pp. 203–218.
Google Scholar
Unruh David R. (1980), The Nature of Social Worlds, “The Pacific Sociological Review”, vol. 23(3), pp. 271–296, https://doi.org/10.2307/1388823
Google Scholar
DOI: https://doi.org/10.2307/1388823
Uri Therese (2015), The Strengths and Limitations of Using Situational Analysis Grounded Theory as Research Methodology, “Journal of Ethnographic & Qualitative Research”, vol. 10(1), pp. 135–151.
Google Scholar
Vail D. Angus (1999), The Commodification of Time in Two Art Worlds, “Symbolic Interaction”, vol. 22(4), pp. 325–344.
Google Scholar
DOI: https://doi.org/10.1016/S0195-6086(00)87400-7
Wacquant Loïc (2004), Body and Soul: Notebooks of an Apprentice Boxer, New York: Oxford University Press.
Google Scholar
Wickham Hadley (2018), You Can’t Do Data Science in a GUI, https://www.youtube.com/watch?v=cpbtcsGE0OA [accessed: 27.11.2018].
Google Scholar
Wickham Hadley, Grolemund Garrett (2017), R for Data Science: Import, Tidy, Transform, Visualize, and Model Data, Beijing–Boston–Farnham–Sebastopol–Tokyo: O’Reilly.
Google Scholar
Xie Yihui, Allaire Joseph J., Grolemund Garrett (2018), R Markdown: The Definitive Guide, Boca Raton: Chapman and Hall/CRC.
Google Scholar
DOI: https://doi.org/10.1201/9781138359444
Zuboff Shoshana (2019), The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power, New York: PublicAffairs.
Google Scholar
Żulicki Remigiusz (2022), Data science: najseksowniejszy zawód XXI wieku w Polsce. Big data, sztuczna inteligencja i PowerPoint, Łódź: Wydawnictwo Uniwersytetu Łódzkiego.
Google Scholar
DOI: https://doi.org/10.18778/8331-110-4
Pobrania
Opublikowane
Wersje
- 2025-01-10 - (3)
- 2024-11-30 - (1)
Jak cytować
Numer
Dział
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.