Application of Phytoremediation in Restoring Sustainable Development to the Environment: Economic and Soil Conditions
DOI:
https://doi.org/10.2478/v10103-012-0016-8Abstract
The objective of this article is a presentation of priority questions and relations involving economic and soil conditions for the application of phytoremediation technology in restoring sustainable development to the environment. The analysis looks at the justifiability of the application of phytoremediation in restoring a balanced environment as an alternative method to costly land recultivation aimed at eliminating pollutants—a solution that is impossible in the case of large areas. The cost effectiveness of the use of phytoremediation in the recovery of trace element in the soil through the process of phytoremediation was demonstrated. The quality of soils as found in the Voivodeship of Łódź was analyzed from the point of view of potential application of the phytoremediation method, taking into account subdivision by heavy metals found in the soils as well as their origins and properties. Grades of soil purity are presented and border values of heavy metal content were identified.
Downloads
References
Antonkiewicz J. and Macuda J. (2005), Zawartość metali ciężkich i węglowodorów w gruntach przylegających do wybranych stacji paliw w Krakowie (Heavy metal and carbohydrate content in soils adjacent to fuel stations in Cracow), „Acta Scientiarum Polonorum”, 4 (2) 31–36
Google Scholar
Baran A., Spałek I., and Jasiewicz C. (2007), Zawartość metali ciężkich w roślinach i gruntach przylegających do wybranych stacji paliw w Krakowie (Heavy metal content in soils adjacent to selected fuel stations in Cracow), „Krakowska Konferencja Młodych Uczonych (Young Scientist Cracow Conference)”, September 20–22
Google Scholar
Chaney R. L., Malik M., Li Y. M., Brown S. L., Brewer E. P., Angle J. S., and Baker A. J. M. (1997), Phytoremediation of Soil Metals, “Current Opinion in Biotechnology”, 8: 279–284
Google Scholar
Chaney R. L., Angle J. S., Broadhurst C. L., Peters C. A., Tappero R. V., and Sparks D. L., (2007) Improved Understanding of Hyperaccumulation Yields Commercial Phytoextraction and Phytomining Technologie,s “Journal of Environmental Quality”, 36, 1429–1443
Google Scholar
Chłopecka A. (1994), Wpływ różnych związków kadmu, miedzi, ołowiu i cynku na formy tych metali w glebie oraz na ich zawartość w roślinach (Impact of various cadmium, copper, lead, and zinc compounds on the form of these metals in the soil and their content in plants), “Institute of Soil Science and Plant Cultivation (IUNG), Series R”
Google Scholar
Dahmani–Muller H., van Oort F., Gélie B., and Balabane M. (2000), Strategies of Heavy Metal Uptake by Three Plant Species Growing Near a Metal Smelter ,“New Phytologist”, 109: 231–8
Google Scholar
Denisiuk W. (2006), Produkcja roślinna jako źródło surowców energetycznych” (Plant production as a source of energy raw materials), “Inżynieria Rolnicza (Agricultural Engineering)”, 5: 123–131
Google Scholar
Dickinson N. M., Baker A. J. M., Doronila A., Laidlaw S., and Reeves R. D. (2009), Phytoremediation of Inorganics: Realism and Synergies, “International Journal of Phytoremediation”, 11: 97–114
Google Scholar
Ebbs S. D., Lasat M. M., Brady D. J., Cornish J., Gordon R., and Kochian L. V. (1997), Phytoextraction of Cadmium and Zinc from a Contaminated Soil, “Journal of Environmental Quality”, 26: 1424–1430
Google Scholar
Gębski M. (1998), Czynniki glebowe oraz nawozowe wpływające na przyswajanie metali ciężkich przez rośliny (Soil and fertilizer factors influencing the absorbability of heavy metals by plants), “Postępy Nauk Rolniczych (Progress in Agricultural Sciences)”, 5: 3–16
Google Scholar
Gębski M, and Mercik S. (1997), Effectiveness of Fertilizer Form in Accumulation of Zinc, Cadmium and Lead in Lettuce (Lactuca sativa L.) and Red Beet (Beta vulgaris var. cicla L.): “Ecological Aspects of Nutrition and Alternatives for Herbicides in Horticulture – International Seminar”, Warsaw, 23–25
Google Scholar
Glass D. (2000), Economic Potential of Phytoremediation, [in] Raskin I. and Ensley B. (Editors), Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment, Wiley, New York, 15–31
Google Scholar
Glass, D. J. (1999). US and International Markets for Phytoremediation Report, D. Glass Associates Inc., Needham, Massachusetts, USA
Google Scholar
Gorlach E, and Gambuś F. (1997), Nawozy fosforanowe i wieloskładnikowe jako źródła zanieczyszczenia gleby metalami ciężkimi” (Phosphate and multi–component fertilizers as a source of heavy metal soil pollution), “Zeszyty Problemowe Postępów Nauk Rolniczych (Progress in Agricultural Sciences: Problem Papers)”, 448a: 139–146
Google Scholar
IMGW - Institute of Meteorology and Water Management, (2008), Report of the Department of Ecology of the of the Wrocław Branch Institute of Meteorology and Water Management, “Monitoring chemizmu opadów atmosferycznych i ocena depozycji zanieczyszczeń do podłoża. Wyniki badań monitoringowych w województwie łódzkim w 2008 roku (Monitoring the chemistry of atmospheric precipitation and assessing the depositing of pollutants to the surface: Monitoring research results for the Voivodeship of Łódź for the year 2008)
Google Scholar
Indeka L. and Karaczun Z. (2000), Akumulacja chromu, kadmu, kobaltu, miedzi i niklu w glebach przy ruchliwych trasach komunikacyjnych (Accumulation of chromium, cadmium, cobalt, copper, and nickel in soils along busy traffic routes), “Ekolgia i Technika (Ecology and Technology)”, 6: 168–173
Google Scholar
Indeka L. and Karczun Z., (1999), Kumulacja wybranych metali ciężkich w glebach przy ruchliwych trasach komunikacyjnych” (Accumulation of selected heavy metals in soils along busy traffic routes), “Ekolgia i Technika (Ecology and Technology)”, 6: 174–180
Google Scholar
Kabata–Pendias A. and Pendias H. (1999), Biogeochemia pierwiastków śladowych (Bio–geo– chemical trace elements), 2nd Edition, Revised, PWN Scientific Publishers, Warsaw
Google Scholar
Kabata–Pendias A., Piotrowska M., Motowicka–Terelak T., Maliszewska–Kordybach B., Filiplak K., Krakowiak A., and Pietruch C. (1995), Podstawy oceny chemicznego zanieczyszczenia gleb. Metale ciężkie, siarka i WWA (Soil pollution assessment basics: Heavy metals, sulfur, and PAHs), Biblioteka Monitoringu Środowiska (Environmental Monitoring Library), Warsaw
Google Scholar
Kayser A., Wenger K., Keller A., Attinger W., Felix H. R., Gupta S. K., and Schulin R. (2000), Enhancement of Phytoextraction of Zn, Cd, and Cu from Calcareous Soil: The Use of NTA and Sulfur Amendments, “Environmental Science and Technology”, 34: 1778–1783
Google Scholar
COM(2006) 231: Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions: Thematic Strategy for Soil Protection, (SEK(2006)620), (SEK(2006)1165) Brussels, September 22, 2006
Google Scholar
Krebs R., Gupta S. K., Furrer G., and Schulin R. (1999), Gravel Sludge as an Immobilizing Agent in Soils Contaminated by Heavy Metals: A Field Study, “Water Air Soil Pollution”, 115: 465–479
Google Scholar
Lewandowski I., Schmidt U., Londo M., and Faaij A. (2006), The Economic Value of the Phytoremediation Function: Assessed By the Example of Cadmium Remediation by Willow (Salix ssp), “Agricultural Systems”, 89: 68–89
Google Scholar
Ochal P. (2009), Stan i środowiskowe skutki zakwaszenia gleb w województwie łódzkim (State and environmental impact of soil acidification in the Voivodeship of Łódź), Institute of Soil Science and Plant Cultivation (IUNG), a State Research Institute, Puławy
Google Scholar
Directive of the Minister of Environment of September 9, 2002 on Soil Quality Standards and Land Quality Standards (Journal of Laws of 2002, No. 165, item 1359)
Google Scholar
Sady W. and Smoleń S. (2004), Wpływ czynników glebowo–nawozowych na akumulację metali ciężkich w roślinach (The impact of soil–fertilizer factors on the accumulation of heavy metals in plants), 10th National Scientific Symposium on the Effects of Using Fertilizer in Garden Farming, Cracow, 269–277
Google Scholar
Sheorana V., Sheoranb A. S., and Pooniaa P. (2009), Phytomining: A Review, “Minerals Engineering”, 22 (12): 1007–1019
Google Scholar
Shi G, and Cai Q. (2009), Cadmium Tolerance and Accumulation in Eight Potential Energy Crops, “Biotechnology Advances”, 27: 555–561
Google Scholar
Singh A., Kuhad R. C., and Ward O. P. (Editors) (2009), Advances in Applied Bioremediation, Soil Biology 17, Springer–Verlag, Berlin, Heidelberg
Google Scholar
Halina Dmochowska (Editor) (2011), Statistical Yearbook of Agriculture Central Statistical Office (GUS), Department of Statistical Publications, Warsaw, 2011
Google Scholar
Vangronsveld J., Herzig R., Weyens N., Boulet J., Adriaensen K., Ruttens A., Thewys T., Vassilev A., Meers E., Nehnevajova E., van der Lelie D., and Mench M. (2009), Phytoremediation of Contaminated Soils and Groundwater: Lessons from the Field, “Environmental Science and Pollution Research”, 16: 765–794
Google Scholar
Witters N., van Slycken S., Ruttens A., Adriaensen K., Meers E., Meiresonne L., Tack F. M. G., Thewys T., Laes E., and Vangronsveld J. (2009), Short–Rotation Coppice of Willow for Phytoremediation of a Metal–Contaminated Agricultural Area: A Sustainability Assessment, “BioEnergy Research”, 2: 144–152
Google Scholar
Witters N., Mendelsohn R., van Passel S., van Slycken S., Weyens N., Schreurs E., Meers E., Tack F., Vanheusden B., and Vangronsveld J. (2012), Phytoremediation: A Sustainable Remediation Technology? II: Economic Assessment of CO2 Abatement through the Use of Phytoremediation Crops for Renewable Energy Production, “Biomass and Bioenergy”, 39: 470–477
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.