The Use of the Robust GREG Estimator to Estimate Small Trade Firms
DOI:
https://doi.org/10.18778/0208-6018.334.03Keywords:
robust estimation, business statistics, small area estimation, GREGAbstract
In the face of dynamic changes in the economy, there is a growing demand for multivariate statistics for cross‑classified domains. In economic statistics, this demand poses a particular challenge owing to the unique character of the population of enterprises, which is what motivates the search for estimation methods that can exploit administrative sources to a greater extent. The adoption of new solutions in this area is expected to increase the scope of statistical outputs and improve the efficiency of estimates. The purpose of the presented study is to test the application of the robust GREG estimator based on the LS method and least median of squares regression to estimate characteristics of small trade firms operating in 2012. The estimation process is supported with delayed variables from administrative registers used as auxiliary variables. The paper refers to small area estimation methods. The variables of interest are estimated at the low level of aggregation represented by cross‑section province and NUTS 2.
Downloads
References
Bracha C. (2004), Estymacja danych z badania aktywności ekonomicznej ludności na poziomie powiatów dla lat 1995–2002, GUS, Warszawa.
Google Scholar
Chambers R., Kokic P., Smigh P., Cruddas M. (2000), Winsorization for Identifying and Treating Outliers in Business Surveys, Proceedings of the Second International Conference on Establishment Surveys, American Statistical Association, Alexandria.
Google Scholar
Dehnel G. (2014), Winsorization Methods in Polish Business Survey, “Statistics in Transition – New Series”, vol. 15, no. 1, pp. 97–110, http://pts.stat.gov.pl/czasopisma/statistics‑in‑transition/ [accessed: 25.11.2017].
Google Scholar
Dehnel G. (2015), Rejestr podatkowy oraz rejestr ZUS jako źródło informacji dodatkowej dla statystyki gospodarczej – możliwości i ograniczenia, [in:] K. Jajuga, M. Walesiak (eds.), Taksonomia 24. Klasyfikacji i analiza danych – teoria i zastosowania, Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu, Wrocław.
Google Scholar
Gross W.F., Bode G., Taylor J.M., Lloyd-Smith C.W. (1986), Some finite population estimators which reduce the contribution of outliers, Proceedings of the Pacific Statistical Conference, 20–24 May 1985, Auckland.
Google Scholar
GUS (2014), Działalność przedsiębiorstw niefinansowych w 2012 roku, Warszawa.
Google Scholar
GUS (2015), Małe i średnie przedsiębiorstwa niefinansowe w latach 2009–2013, Warszawa.
Google Scholar
GUS (2016), Wykorzystanie danych administracyjnych w badaniu: Ocena bieżącej działalności gospodarczej przedsiębiorstw, Warszawa.
Google Scholar
Horvitz D.G., Thompson D.J. (1952), A Generalization of Sampling without Replacement from a Finite Universe, “Journal of the American Statistical Association”, vol. 47, pp. 663–685.
Google Scholar
Preston J., Mackin C. (2002), Winsorization for Generalised Regression Estimation, Paper for the Methodological Advisory Committee, Australian Bureau Of Statistics, Canberra.
Google Scholar
Rao J.N.K., Molina I. (2015), Small Area Estimation, Wiley, Hoboken, doi: 10.1002/9781118735855.
Google Scholar
Rousseeuw P.J., Leroy P.M. (2003), Robust Regression and Outlier Detection, Wiley-Interscience, Hoboken.
Google Scholar