Zmiany częstości oraz czasu trwania makroform Vangengeima-Girsa w latach 1979–2023

Autor

DOI:

https://doi.org/10.18778/1427-9711.23.03

Słowa kluczowe:

Formy makro-cyrkulacji Vangengeima-Girsa, epizody cyrkulacyjne, wieloletnie trendy, ocieplenie Arktyki

Abstrakt

Wyraźnie szybszy, w porównaniu ze średnią globalną temperaturą, wzrost temperatury Arktyki, powoduje zmiany pola wiatru w szerokościach umiarkowanych w wyższej troposferze. Opracowania wskazują na możliwe zmiany geometrii pola wiatru, widoczne w zafalowaniu pola geopotencjału lub w serii dyskretnych wystąpień układów cyrkulacji. Niniejsze opracowanie wpisuje się w drugi wątek badań. Celem analizy jest oszacowanie wieloletnich trendów makroform Vangengeima-Girsa (V-G) w latach 1979–2023 oraz w okresie od roku 1999, który uznaje się jako rok przełomowy w przebiegu ocieplenia Arktyki.

Oszacowano współczynniki trendów w 45-leciu oraz w ruchomych 21-letnich okresach charakterystyk opisujących zmienność form V-G. Rezultaty wskazują na nieliniowy przebieg częstości rocznych W, E, liczby epizodów E oraz czasu trwania epizodów C i W. Pozostałe parametry utrzymują jednolity kierunek zmian (+/−) przez cały badany okres: częstość C(+), liczba epizodów W(+), C(+), WEC(+), czas trwania WEC(−) i E(−).

Wyróżniono procesy, które wskazują na wzrost przepływu południkowego: spadek częstości formy W po roku 2005, wzrost częstości formy E po roku 2003, wzrost częstości formy C oraz liczby epizodów C w okresie 1979–2023, wzrost liczby epizodów E oraz znaczny spadek czasu trwania epizodów W po roku 1999. Ponadto istotne trendy: dodatni (ujemny) liczby (czasu trwania) wszystkich epizodów wskazują na wzrost zmienności z dnia na dzień cyrkulacji.

Pobrania

Bibliografia

Alizadeh O., Lin Z. 2021. Rapid Arctic warming and its link to the waviness and strength of the westerly jet stream over West Asia. Global and Planetary Change 199, 103447: 1–11. https://doi.org/10.1016/j.gloplacha.2021.103447
Google Scholar DOI: https://doi.org/10.1016/j.gloplacha.2021.103447

Barry R.G., Carleton A.M. 2001. Synoptic and dynamic climatology. Routledge, London and New York: 620 pp.
Google Scholar

Blackport R., Screen J.A. 2020. Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Science Advances 6, eaay2880: 1–9. https://doi.org/10.1126/sciadv.aay2880
Google Scholar DOI: https://doi.org/10.1126/sciadv.aay2880

Chylek P., Folland C., Klett J.D., Wang M., Hengartner N., Lesins G., Dubey M.K. 2022. Annual mean Arctic Amplification 1970–2020: Observed and simulated by CMIP6 climate models. Geophysical Research Letters 49, e2022GL099371: 1–8. https://doi.org/10.1029/2022GL099371
Google Scholar DOI: https://doi.org/10.1029/2022GL099371

Degirmendžić J., Kożuchowski K. 2019. Variation of macro-circulation forms over the Atlantic-Eurasian temperate zone according to the Vangengeim-Girs classification. International Journal of Climatology: 1–15. https://doi.org/10.1002/joc.6118
Google Scholar DOI: https://doi.org/10.1002/joc.6118

Di Capua G., Coumou D. 2016. Changes in meandering of the Northern Hemisphere circulation. Environmental Research Letters 11, 094028: 1–9. https://doi.org/10.1088/1748-9326/11/9/094028
Google Scholar DOI: https://doi.org/10.1088/1748-9326/11/9/094028

Dimitrieev A.A., Belyazo V.A. 2006. Kalendarnyj katalog atmosfernykh processov po cirkumpolarnoj zonie severnogo polushariya i ikh kharakteristiki za period s 1949 po 2005 g (Calendar catalogue of atmospheric processes in the Northern Hemisphere circumpolar zone and their characteristics in the period 1949–2005), [w:] Kosmos, Planetarnaya Klimaticheskaya Izmenchivost’ i Atmosfera Polarnykh Regionov. St. Petersburg: Gidrometeoizdat: 358 pp. (in Russian).
Google Scholar

Francis J.A., Vavrus S.J. 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophysical Research Letters 39, L06801: 1–6. https://doi.org/10.1029/2012GL051000
Google Scholar DOI: https://doi.org/10.1029/2012GL051000

Francis J.A., Vavrus S.J. 2015. Evidence for a wavier jet stream in response to rapid Arctic warming. Environmental Research Letters 10, 014005: 1–12. https://doi.org/10.1088/1748-9326/10/1/014005
Google Scholar DOI: https://doi.org/10.1088/1748-9326/10/1/014005

Hanna E., Cropper T.E., Hall R.J., Cappelen J. 2016. Greenland Blocking Index 1851–2015: A regional climate change signal. International Journal of Climatology 36: 4847–4861. https://doi.org/10.1002/joc.4673
Google Scholar DOI: https://doi.org/10.1002/joc.4673

Huth R., Cahynova M., Kysely J. 2010. The Hess and Brezowsky synoptic catalogue: A timeless concept (although with a few drawbacks). EMS Annual Meeting Abstracts 7, EMS2010-733, 10th EMS/8th ECAC.
Google Scholar

Kornhuber K., Messori G. 2023. Recent Increase in a Recurrent Pan-Atlantic Wave Pattern Driving Concurrent Wintertime Extremes. Bulletin of the American Meteorological Society 104: 1694–1708. https://doi.org/10.1175/BAMS-D-21-0295.1
Google Scholar DOI: https://doi.org/10.1175/BAMS-D-21-0295.1

Kożuchowski K., Degirmendžić J. 2018. Zmienność form cyrkulacji środkowotroposferycznej według klasyfikacji Wangenheima-Girsa i ich relacje z polem ciśnienia na poziomie morza. Przegląd Geofizyczny LXIII (1–2): 89–122.
Google Scholar

Kučerová M., Beck C., Philipp A., Huth R. 2017. Trends in frequency and persistence of atmospheric circulation types over Europe derived from a multitude of classifications. International Journal of Climatology 37: 2502–2521. https://doi.org/10.1002/joc.4861
Google Scholar DOI: https://doi.org/10.1002/joc.4861

Marsz A.A. 2013. Frekwencja makrotypów cyrkulacji środkowotroposferycznej według klasyfikacji Wangengejma-Girsa w okresie zimowym a pole ciśnienia atmosferycznego nad Europą i północną Azją. Przegląd Geofizyczny 58: 3–23.
Google Scholar

Marsz A.A. 2023. Wewnątrzsystemowe mechanizmy zmienności i zmian klimatu. Stowarzyszenie Klimatologów Polskich, Reda–Warszawa: 279 pp.
Google Scholar

Martin J.E. 2021. Recent trends in the waviness of the Northern Hemisphere wintertime polar and subtropical jets. Journal of Geophysical Research: Atmospheres 126, e2020JD033668: 1–15. https://doi.org/10.1029/2020JD033668
Google Scholar DOI: https://doi.org/10.1029/2020JD033668

Montgomery D.C., Peck E.A., Vining G.G. 1990. Introduction to linear regression analysis. Wiley Series in Probability and Statistics, New York: 872 pp.
Google Scholar

Moon W., Kim B.-M., Yang G.-H., Wettlaufer J.S. 2022. Wavier jet streams driven by zonally asymmetric surface thermal forcing. Proceedings of the National Academy of Sciences USA 119, e2200890119: 1–8. https://doi.org/10.1073/pnas.2200890119
Google Scholar DOI: https://doi.org/10.1073/pnas.2200890119

Nowosad M. 2017. Variability of the zonal circulation index over Central Europe according to the Litynski method. Geographia Polonica 90: 417–430. https://doi.org/10.7163/GPol.0111
Google Scholar DOI: https://doi.org/10.7163/GPol.0111

Overland J.E., Wang M. 2010. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus 62A: 1–9. https://doi.org/10.1111/j.1600-0870.2009.00421.x
Google Scholar DOI: https://doi.org/10.1111/j.1600-0870.2009.00421.x

Overland J.E., Dethloff K., Francis J.A., Hall R.J., Hanna E., Kim S.-J., Screen J.A., Shepherd T.G., Vihma T. 2016. Nonlinear response of mid-latitude weather to the changing Arctic. Nature Climate Change 6: 992–999. https://doi.org/10.1038/NCLIMATE3121
Google Scholar DOI: https://doi.org/10.1038/nclimate3121

Pena-Ortiz C., Gallego D., Ribera P., Ordonez P., Alvarez-Castro M.D.C. 2013. Observed trends in the global jet stream characteristics during the second half of the 20th century. Journal of Geophysical Research: Atmospheres 118: 2702–2713. https://doi.org/10.1002/jgrd.50305
Google Scholar DOI: https://doi.org/10.1002/jgrd.50305

Schemm S., Röthlisberger M. 2024. Aquaplanet simulations with winter and summer hemispheres: Model setup and circulation response to warming. Weather and Climate Dynamics 5: 43–63. https://doi.org/10.5194/wcd-5-43-2024
Google Scholar DOI: https://doi.org/10.5194/wcd-5-43-2024

Sepp M. 2005. Influence of atmospheric circulation on environmental variables in Estonia. Dissertationes Geographicae Universitatis Tartuensis 25: 84.
Google Scholar

Sidorenkov N.S., Orlov I.A. 2008. Atmospheric circulation epochs and climate changes. Russian Meteorology and Hydrology 33: 553–559. https://doi.org/10.3103/S1068373908090021
Google Scholar DOI: https://doi.org/10.3103/S1068373908090021

Stewart K.D., Macleod F. 2022. A laboratory model for a meandering zonal jet. Journal of Advances in Modeling Earth Systems 14, e2021MS002943: 1–24. https://doi.org/10.1029/2021MS002943
Google Scholar DOI: https://doi.org/10.1029/2021MS002943

Strong C., Davis R.E. 2007. Winter jet stream trends over the Northern Hemisphere. Quarterly Journal of the Royal Meteorological Society 133: 2109–2115. https://doi.org/10.1002/qj.171
Google Scholar DOI: https://doi.org/10.1002/qj.171

Wang Y., Yang Y., Huang F. 2024. Cold Air Outbreaks in Winter over the Continental United States and Its Possible Linkage with Arctic Sea Ice Loss. Atmosphere 15: 1–14. https://doi.org/10.3390/atmos15010063
Google Scholar DOI: https://doi.org/10.3390/atmos15010063

Woollings T., Drouard M., O’Reilly C.H., Sexton D.M.H., McSweeney C. 2023. Trends in the atmospheric jet streams are emerging in observations and could be linked to tropical warming. Communications Earth & Environment 4 (125): 1–8. https://doi.org/10.1038/s43247-023-00792-8
Google Scholar DOI: https://doi.org/10.1038/s43247-023-00792-8

Opublikowane

2024-12-30

Jak cytować

Degirmendžić, J. (2024). Zmiany częstości oraz czasu trwania makroform Vangengeima-Girsa w latach 1979–2023. Acta Universitatis Lodziensis. Folia Geographica Physica, (23), 27–37. https://doi.org/10.18778/1427-9711.23.03

Numer

Dział

Artykuły naukowe