Changes in the frequency and persistence of the Vangengeim-Girs macro-circulation forms in the period 1979–2023
DOI:
https://doi.org/10.18778/1427-9711.23.03Keywords:
Vangengeim-Girs macro-circulation forms, circulation episodes, long-term trends, Arctic amplificationAbstract
The significantly faster increase in Arctic temperature compared to the global average is causing changes in wind patterns in the mid-latitudes of the upper troposphere. Studies suggest possible changes in the geometry of wind fields, evident in the waviness of geopotential lines or in a series of discrete circulation patterns. This study aligns with the latter research focus. The objective of the analysis is to estimate long-term trends in the Vangengeim-Girs (V-G) macroforms from 1979 to 2023, and since 1999, which is considered a breaking point in the course of Arctic warming.
Trend coefficients were estimated for the 45-year period and in moving 21-year window for characteristics describing V-G forms variability. The results indicate a nonlinear trend in the annual frequency of W and E forms, the number of E episodes, and the duration of C and W episodes. Other parameters maintained a consistent direction of change (+/−) throughout the study period: frequency of C(+), number of W(+), C(+), WEC(+) episodes, duration of WEC(−) and E(−).
Processes indicating an increase in meridionality include the decline in W frequency after 2005, the rise in E frequency after 2003, the increase in C frequency and the number of C episodes from 1979 to 2023, and the rise in the number of E episodes along with a significant decline in W episode duration after 1999.
Additionally, significant trends in the increase (decrease) in the number (duration) of all episodes suggest an increase in day-to-day circulation variability.
Downloads
References
Alizadeh O., Lin Z. 2021. Rapid Arctic warming and its link to the waviness and strength of the westerly jet stream over West Asia. Global and Planetary Change 199, 103447: 1–11. https://doi.org/10.1016/j.gloplacha.2021.103447
Google Scholar
DOI: https://doi.org/10.1016/j.gloplacha.2021.103447
Barry R.G., Carleton A.M. 2001. Synoptic and dynamic climatology. Routledge, London and New York: 620 pp.
Google Scholar
Blackport R., Screen J.A. 2020. Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Science Advances 6, eaay2880: 1–9. https://doi.org/10.1126/sciadv.aay2880
Google Scholar
DOI: https://doi.org/10.1126/sciadv.aay2880
Chylek P., Folland C., Klett J.D., Wang M., Hengartner N., Lesins G., Dubey M.K. 2022. Annual mean Arctic Amplification 1970–2020: Observed and simulated by CMIP6 climate models. Geophysical Research Letters 49, e2022GL099371: 1–8. https://doi.org/10.1029/2022GL099371
Google Scholar
DOI: https://doi.org/10.1029/2022GL099371
Degirmendžić J., Kożuchowski K. 2019. Variation of macro-circulation forms over the Atlantic-Eurasian temperate zone according to the Vangengeim-Girs classification. International Journal of Climatology: 1–15. https://doi.org/10.1002/joc.6118
Google Scholar
DOI: https://doi.org/10.1002/joc.6118
Di Capua G., Coumou D. 2016. Changes in meandering of the Northern Hemisphere circulation. Environmental Research Letters 11, 094028: 1–9. https://doi.org/10.1088/1748-9326/11/9/094028
Google Scholar
DOI: https://doi.org/10.1088/1748-9326/11/9/094028
Dimitrieev A.A., Belyazo V.A. 2006. Kalendarnyj katalog atmosfernykh processov po cirkumpolarnoj zonie severnogo polushariya i ikh kharakteristiki za period s 1949 po 2005 g (Calendar catalogue of atmospheric processes in the Northern Hemisphere circumpolar zone and their characteristics in the period 1949–2005), [w:] Kosmos, Planetarnaya Klimaticheskaya Izmenchivost’ i Atmosfera Polarnykh Regionov. St. Petersburg: Gidrometeoizdat: 358 pp. (in Russian).
Google Scholar
Francis J.A., Vavrus S.J. 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophysical Research Letters 39, L06801: 1–6. https://doi.org/10.1029/2012GL051000
Google Scholar
DOI: https://doi.org/10.1029/2012GL051000
Francis J.A., Vavrus S.J. 2015. Evidence for a wavier jet stream in response to rapid Arctic warming. Environmental Research Letters 10, 014005: 1–12. https://doi.org/10.1088/1748-9326/10/1/014005
Google Scholar
DOI: https://doi.org/10.1088/1748-9326/10/1/014005
Hanna E., Cropper T.E., Hall R.J., Cappelen J. 2016. Greenland Blocking Index 1851–2015: A regional climate change signal. International Journal of Climatology 36: 4847–4861. https://doi.org/10.1002/joc.4673
Google Scholar
DOI: https://doi.org/10.1002/joc.4673
Huth R., Cahynova M., Kysely J. 2010. The Hess and Brezowsky synoptic catalogue: A timeless concept (although with a few drawbacks). EMS Annual Meeting Abstracts 7, EMS2010-733, 10th EMS/8th ECAC.
Google Scholar
Kornhuber K., Messori G. 2023. Recent Increase in a Recurrent Pan-Atlantic Wave Pattern Driving Concurrent Wintertime Extremes. Bulletin of the American Meteorological Society 104: 1694–1708. https://doi.org/10.1175/BAMS-D-21-0295.1
Google Scholar
DOI: https://doi.org/10.1175/BAMS-D-21-0295.1
Kożuchowski K., Degirmendžić J. 2018. Zmienność form cyrkulacji środkowotroposferycznej według klasyfikacji Wangenheima-Girsa i ich relacje z polem ciśnienia na poziomie morza. Przegląd Geofizyczny LXIII (1–2): 89–122.
Google Scholar
Kučerová M., Beck C., Philipp A., Huth R. 2017. Trends in frequency and persistence of atmospheric circulation types over Europe derived from a multitude of classifications. International Journal of Climatology 37: 2502–2521. https://doi.org/10.1002/joc.4861
Google Scholar
DOI: https://doi.org/10.1002/joc.4861
Marsz A.A. 2013. Frekwencja makrotypów cyrkulacji środkowotroposferycznej według klasyfikacji Wangengejma-Girsa w okresie zimowym a pole ciśnienia atmosferycznego nad Europą i północną Azją. Przegląd Geofizyczny 58: 3–23.
Google Scholar
Marsz A.A. 2023. Wewnątrzsystemowe mechanizmy zmienności i zmian klimatu. Stowarzyszenie Klimatologów Polskich, Reda–Warszawa: 279 pp.
Google Scholar
Martin J.E. 2021. Recent trends in the waviness of the Northern Hemisphere wintertime polar and subtropical jets. Journal of Geophysical Research: Atmospheres 126, e2020JD033668: 1–15. https://doi.org/10.1029/2020JD033668
Google Scholar
DOI: https://doi.org/10.1029/2020JD033668
Montgomery D.C., Peck E.A., Vining G.G. 1990. Introduction to linear regression analysis. Wiley Series in Probability and Statistics, New York: 872 pp.
Google Scholar
Moon W., Kim B.-M., Yang G.-H., Wettlaufer J.S. 2022. Wavier jet streams driven by zonally asymmetric surface thermal forcing. Proceedings of the National Academy of Sciences USA 119, e2200890119: 1–8. https://doi.org/10.1073/pnas.2200890119
Google Scholar
DOI: https://doi.org/10.1073/pnas.2200890119
Nowosad M. 2017. Variability of the zonal circulation index over Central Europe according to the Litynski method. Geographia Polonica 90: 417–430. https://doi.org/10.7163/GPol.0111
Google Scholar
DOI: https://doi.org/10.7163/GPol.0111
Overland J.E., Wang M. 2010. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus 62A: 1–9. https://doi.org/10.1111/j.1600-0870.2009.00421.x
Google Scholar
DOI: https://doi.org/10.1111/j.1600-0870.2009.00421.x
Overland J.E., Dethloff K., Francis J.A., Hall R.J., Hanna E., Kim S.-J., Screen J.A., Shepherd T.G., Vihma T. 2016. Nonlinear response of mid-latitude weather to the changing Arctic. Nature Climate Change 6: 992–999. https://doi.org/10.1038/NCLIMATE3121
Google Scholar
DOI: https://doi.org/10.1038/nclimate3121
Pena-Ortiz C., Gallego D., Ribera P., Ordonez P., Alvarez-Castro M.D.C. 2013. Observed trends in the global jet stream characteristics during the second half of the 20th century. Journal of Geophysical Research: Atmospheres 118: 2702–2713. https://doi.org/10.1002/jgrd.50305
Google Scholar
DOI: https://doi.org/10.1002/jgrd.50305
Schemm S., Röthlisberger M. 2024. Aquaplanet simulations with winter and summer hemispheres: Model setup and circulation response to warming. Weather and Climate Dynamics 5: 43–63. https://doi.org/10.5194/wcd-5-43-2024
Google Scholar
DOI: https://doi.org/10.5194/wcd-5-43-2024
Sepp M. 2005. Influence of atmospheric circulation on environmental variables in Estonia. Dissertationes Geographicae Universitatis Tartuensis 25: 84.
Google Scholar
Sidorenkov N.S., Orlov I.A. 2008. Atmospheric circulation epochs and climate changes. Russian Meteorology and Hydrology 33: 553–559. https://doi.org/10.3103/S1068373908090021
Google Scholar
DOI: https://doi.org/10.3103/S1068373908090021
Stewart K.D., Macleod F. 2022. A laboratory model for a meandering zonal jet. Journal of Advances in Modeling Earth Systems 14, e2021MS002943: 1–24. https://doi.org/10.1029/2021MS002943
Google Scholar
DOI: https://doi.org/10.1029/2021MS002943
Strong C., Davis R.E. 2007. Winter jet stream trends over the Northern Hemisphere. Quarterly Journal of the Royal Meteorological Society 133: 2109–2115. https://doi.org/10.1002/qj.171
Google Scholar
DOI: https://doi.org/10.1002/qj.171
Wang Y., Yang Y., Huang F. 2024. Cold Air Outbreaks in Winter over the Continental United States and Its Possible Linkage with Arctic Sea Ice Loss. Atmosphere 15: 1–14. https://doi.org/10.3390/atmos15010063
Google Scholar
DOI: https://doi.org/10.3390/atmos15010063
Woollings T., Drouard M., O’Reilly C.H., Sexton D.M.H., McSweeney C. 2023. Trends in the atmospheric jet streams are emerging in observations and could be linked to tropical warming. Communications Earth & Environment 4 (125): 1–8. https://doi.org/10.1038/s43247-023-00792-8
Google Scholar
DOI: https://doi.org/10.1038/s43247-023-00792-8
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.