Biomass Production of Selected Energy Plants: Economic Analysis and Logistic Strategies
DOI:
https://doi.org/10.2478/v10103-012-0018-6Abstract
The objective of this article is the conducting of an analysis of the production of selected energy plants that are already a basic source of agrobiomass in Poland. The analysis looks at environmental aspects and production conditions for biomass designated for energy for the Virginia mallow (Sida hermaphrodita), common osier (Salix viminalis), silver–grass (Miscanthus x giganteus), and switchgrass (Panicum virgatum). What is presented is an economic analysis of the production of selected energy plants, taking into account the costs of establishing plantations and their cost effectiveness. Moreover, logistic strategies for the delivery of biomass intended to secure continuous production of renewable energy as a part of sustainable development is signaled.
Downloads
References
Antonowicz J. (2005), Potencjał energetyczny ślazowca pensylwańskiego (Energy potential of the Virginia mallow), „AURA”, 3, pp. 7–9
Google Scholar
Aronsson P. and Perttu K. (2001), Willow Vegetation Filters for Wastewater Treatment and Soil Remediation Combined with Biomass Production, “Forestry Chronicle”, 77: 293–299
Google Scholar
Bals B., Rogers C., Jin M., Balan V., and Dale B. (2010), Evaluation of Ammonia Fiber Expansion (AFEX) Pretreatment for Enzymatic Hydrolysis of Switchgrass Harvested in Different Seasons and Locations, “Biotechnology for Biofuels”, 3: 1
Google Scholar
Bendfeldt E. S., Burger J. A., and Daniels W. L. (2001), Quality of Amended Mine Soils after Sixteen Years, ”Soil Science Society of America Journal”, l 65: 1736–1744
Google Scholar
Błażej J. (2007), Nieinfekcyjne i infekcyjne czynniki chorobotwórcze krzaczastej formy wierzby (Salix viminalis l.) uprawianej na plantacjach towarowych w województwie podkarpackim (Noninfective and infective disease factors in shrub forms of the willow (Salix viminalis l.) as cultivated on commercial plantations in the Podkarpackie Voivodeship), “Postępy w Ochronie Roślin (Progress in Plant Protection)”, 47 (4) 321–329
Google Scholar
Borkowska H. (2007), Virginia Mallow and Willow Coppice Yield on Good Wheat Complex Soil (In Polish), “Fragmenta Agronomica”, 2 (41)
Google Scholar
Borkowska H., Molas R., and Kupczyk A. (2009), Virginia Fanpetals (Sida hermaphrodita rusby) Cultivated on Light Soil: Height of Yield and Biomass Productivity, “Polish Journal of Environmental Studies”, 18 (4) pp. 563–568
Google Scholar
Borkowska H. and Styk B. (2006), Ślazowiec pensylwański (Sida hermphrodita rusby) uprawa i wykorzystanie (The Virginia mallow (Sida hermphrodita rusby): Cultivation and utilization), University of Life Sciences, Lublin
Google Scholar
Brouglieri M., and Liberti L. (2008), Optimal Running and Planning of a Biomass–Based Energy Production Process, “Energy Policy”, 36:2430–2438
Google Scholar
Bullard M. J., Heath M. C., and Nixon P. M. (1995), Shoot Growth, Radiation Interception and Dry Matter Partitioning in Miscanthus sinensis ‘giganteus’ Grown at Two Densities in UK During the Establishment Phase, “Annals of Applied Biology”, 126: 365–378
Google Scholar
Bullard M. J. and Metcalfe P. (2001), Estimating the Energy Requirements and CO2 Emissions from Production of the Perennial Grasses Miscanthus, Switchgrass and Reed Canary Grass, ADAS Report for the Department of Trade and Industry, U.K.
Google Scholar
Burns J. C., Godshalk E. B., and Timothy D. H. (2008a), Registration of ‘Performer’ Switchgrass, “Journal of Plant Registrations”, 2: 29–30
Google Scholar
Burns J. C., Godshalk E. B., and Timothy D. H. (2008b), Registration of ‘BoMaster’ Switchgrass, “Journal of Plant Registrations”, 2: 31–32
Google Scholar
Chołuj D., Podlaski S., Wiśniewski G., and Szmalec J. (2008), Kompleksowa ocena biologicznej przydatności 7 gatunków roślin wykorzystywanych na cele energetyczne (Comprehensive assessment of the biological usefulness of seven species of plants used for energy), “Studia i Raporty IUNG–PIB (Institute of Soil Science and Plant Cultivation, A State Research Institute, Studies and Reports)”, volume 11
Google Scholar
Czerniakowski Z. (2005), Szkodliwe owady w matecznikach wierzby energetycznej (Harmful insects in energy willow sources), “Postępy w Ochronie Roślin (Progress in Plant Protection)”, 45: 77–81
Google Scholar
Danalatos N. G. (2007), Potential Growth and Biomass Productivity of Miscanthus x gigantheus as Affected by Plant Density and N–fertilization in Central Greece, “Biomass and Bioenergy”, 31 (2–3) 145–152
Google Scholar
Denisiuk W. (2006), Produkcja roślinna jako źródło surowców energetycznych (Plant production as a source of energy raw materials), ”Inżynieria Rolnicza (Agricultural Engineering)”, 5: 123–131
Google Scholar
“DEVELOPMENT PLAN 2007−2013 FOR ENHANCING THE USE OF BIOMASS AND BIOENERGY”, http://ec.europa.eu/energy/res/biomass_action_plan/doc/nbap/information/estonia_en.pdf
Google Scholar
Dunnett A., Adjiman C. S., and Shah N. A. (2008), A Spatially Explicit Whole–System Model of the Lignocellulosic Bioethanol Supply Chain: An Assessment of Decentralized Processing Potential, “Biotechnology for Biofuels”, 1:13
Google Scholar
Elbersen H. W., Christian D. G., Bacher W., Alexopoulou E., Pignatelli V., and van den Berg D. (2000), Switchgrass Variety Choice in Europe, 1st World Conference on Biomass for Energy and Industry, Seville, Spain
Google Scholar
Elbersen H. W., Christian D. G., El Bassam N., Sauerbeck G., Alexopoulou E., Sharma N., and Piscioneri I., (2004), A Management Guide for Planting and Production of Switchgrass as a Biomass Crop in Europe, 2nd World Conference on Biomass for Energy, Industry and Climate Protection, Rome, Italy, 140–142
Google Scholar
Ericsson K., Rosenqvist H., and Nilsson J. (2009), Energy Crop Production Costs in UE, “Biomass and Bioenergy”, 33: 1577–586
Google Scholar
Faasch R. J. and Patenaude G. (2012), The Economics of Short Rotation Coppice in Germany, “Biomass and Bioenergy”, 45: 27–40
Google Scholar
Faber A., Stasiak M., and Kuś J. (2007), Wstępna ocena produkcyjności wybranych gatunków roślin energetycznych (Preliminary assessment of the productivity of selected energy plants), “Postępy w Ochronie Roślin (Progress in Plant Protection)”, 47 (4) 339–346
Google Scholar
Fike, J., Parrish D., Wolf D., Balasko J., Green Jr. J., Rasnake M., and Reynolds J. (2006), Switchgrass Production for the Upper Southeastern USA: Influence of Cultivar and Cutting Frequency on Biomass Yields, “Biomass and Bioenergy”, 30:207–213
Google Scholar
Fischer G., Prieler S., and van Velthuizen H. (2005), Biomass Potentials of Miscanthus, Willow and Poplar: Results and Policy Implications for Eastern Europe, Northern and Central Asia, “Biomass and Bioenergy”, 28: 119–132
Google Scholar
Girouard P., Henning J. C., and Samson R. (1995), Economic Assessment of Short–Rotation Forestry and Switchgrass Plantations for Energy Production in Central Canada, Proceedings of the Canadian Energy Plantation Workshop, Gananoque, Ontario, May 2–4
Google Scholar
Gołaszewski J. (2011), Wykorzystanie substratów pochodzenia rolniczego w biogazowniach w Polsce (Use of agriculturally–derived substrates in biogas–works in Poland), “Postępy Nauk Rolniczych (Progress in the Agricultural Sciences)”, 2: 69–94
Google Scholar
Grzesik M., Janas R., and Romanowska–Duda Z. B. (2011), Stymulacja wzrostu i procesów metabolicznych ślazowca pensylwańskiego (Sida hermaphrodita) (Stimulating the growth and metabolic processes of the Virginia mallow (Sida hermaphrodita)), “Problemy Inżynierii Rolniczej (Problems in Agricultural Engineering)”. No. 4, 81–87
Google Scholar
Hightshoe G. (1988), Native Trees, Shrubs and Vines for Urban and Rural America, John Wiey & Sons, Inc., New York, p. 819
Google Scholar
Kacprzak M., Ociepa A., and Bień J. (2010), The influence of Soil Fertilization on the Amounts of Ashes and Contents of Heavy Metals in Biomass Ashes, “Archivum Combustionis”, 30 (3), pp. 126–131
Google Scholar
Kalembasa D., Malinowska E., and Siewniak M. (2006a), Wpływ nawożenia na plonowanie wybranych gatunków wierzby krzewiastej (The influence of fertilization on the harvests of selected species of willow shrubs), “Acta Agrophizyka”, 8 (1) 119–126
Google Scholar
Kalembasa S., Wysokiński A., and Cichuta R. (2009), Zawartość metali cięśkich w wierzbie (Salix viminalis) przy zróżnicowanym nawożeniu azotowym (Heavy metal content in the willow (Salix viminalis) with varied nitrogen fertilization), “Acta Agrophysica”, 13 (2) 385–392
Google Scholar
Kolowca J., Wróbel M., and Baran B. (2009), Model mechaniczny źdźbła trawy Miscanthus giganteus (The mechanical model of the Miscanthus giganteus grass blade), “Inżynieria Rolnicza (Agricultural Engineering)”, 6 (115) 149–154
Google Scholar
Kopp R. L., Abrahamson L. P., White E. H., Volk T. A., Nowak C. A., and Fillhart R. C. (2001), Willow Biomass Production During Ten Successive Annual Harvests, “Biomass and Bioenergy”, 20:1–7
Google Scholar
Kuś J., Feber J., Stasiak M., and Kawalec A. (2008), Produktywność wybranych gatunków roślin uprawianych na cele energetyczne w różnych siedliskach (The productivity of selected species of plants cultivated for energy in various habitats), “Studia i raporty IUNG–BIP” (Institute of Soil Science and Plant Cultivation, A State Research Institute, Studies and Reports), 11 67–80
Google Scholar
Kuś J., and Matyka M. (2010), Wybrane elementy agrotechniki roślin uprawianych na cele energetyczne (Selected aspects of the agrotechnology of plants cultivated for energy), [in:] Bocian P., Golec T., and Rakowski, Nowoczesne technologie pozyskiwania i energetycznego wykorzystania biomasy (Modern technologies for receiving and using biomass for energy), Warsaw, pp. 101–120
Google Scholar
Kuzovkina Y. A., and Quigley M. F. (2005), Willows beyond Wetlands: Uses of Salix pecies for Environmental Projects, “Water, Air, and Soil Pollution”, 162: 183–204
Google Scholar
Kwaśniewski D. (2011), Koszty i opłacalność produkcji biomasy z trzyletniej wierzby energetycznej (Costs and profitability of biomass production from a three–year energy willow), “Inżynieria Rolnicza (Agricultural Engineering)”, 126: 145–154
Google Scholar
Labrecque M., Tedodorescu T. I., Babeux P., Cogliastro A., and Daigle S. (1993), Growth Patterns and Biomass Productivity of Two Salix Species Grown under Short Rotation, Intensive Culture in Southwestern Quebec, “Biomass and Bioenergy”, 4: 419–425
Google Scholar
Labrecque M., Tedodorescu T. I., Babeux P., Cogliastro A., and Daigle S. (1994), Impact of Herbaceous Competition and Drainage Conditions on the Early Productivity of Willows and Short Rotation Intensive Culture, “Canadian Journal of Forest Research”, 24: 493–501
Google Scholar
Labrecque M., Tedodorescu T. I., and Daigle S. (1997), Biomass Productivity and Wood Energy of Salix Species after Two Years Growth in SRIC Fertilized with Waste Water Sludge, “Biomass and Bioenergy”, 12: 409–417
Google Scholar
Lemus R., Brummer E. C., Moore K. J., Molstad N. E., Burras C. L., and Barker M. F. (2002), Biomass Yield and Quality of 20 Switchgrass Populations in Southern Iowa, U.S.A., “Biomass and Bioenergy”, 23: 433–442
Google Scholar
Lisowski J. and Porwisiak H. (2010), Wpływ nawożenia osadami na plon miskanta (Miscanthus giganteus) (The impact of sludge fertilization on miscanthus (Miscanthus giganteus) yields), “Fragmenta Agronomica”, 27 (4) 94–101
Google Scholar
Łabętowicz J. and Stępień W. (2010), Nawożenie roślin energetycznych (wierzba, miskant, ślazowiec) (The fertilization of energy plants (willow, miscanthus, Virginia mallow)), [in:] Bocian P., Golec T., and Rakowski, Nowoczesne technologie pozyskiwania i energetycznego wykorzystania biomasy (Modern technologies for receiving and using biomass for energy), Warsaw, pp. 89–100
Google Scholar
Matyka M. (2008), Opłacalność i konkurencyjność produkcji wybranych roślin energetycznych (The profitability and competitiveness of the production of selected energy plants), “Studia i Raporty IUNG–PIB” (Institute of Soil Science and Plant Cultivation, A State Research Institute, Studies and Reports), 11: 113–124
Google Scholar
Ministry of the Economy, (2010), Krajowy Plan Działań w zakresie Odnawialnych Źródeł Energii (National action plan for renewable energy sources), Warsaw
Google Scholar
Mitchel R., Vogel, and Schmer M. (2012), Schwitchgrass (Panicum vulgare) for Biofuel Production, “Farm Energy Home”, www.extention.org
Google Scholar
Monti A., Venturi P., and Elbersen H. W. (2001), Evaluation of the Establishment of Lowland and Upland Swichgrass (Panicum virgatum L.) Varieties under Different Tillage and Seedbed Conditions in Northern Italy, Soil and Tillage Research, 63: 75–83
Google Scholar
Mrówczyński M., Nijak K., Pruszyński G., and Wachowiak H. (2007), Zagrożenie roślin energetycznych przez szkodniki” (Pest threats to energy plants), „Postępy w ochronie roślin (Progress in Plant Protection)”, 47 (4) 347–350
Google Scholar
Mulkey V. R., Owens V. N., and Lee D. K. (2006), Management of Switchgrass–Dominated Conservation Reserve Program Lands for Biomass Production in South Dakota, “Crop Science”, 46: 712–720
Google Scholar
Mulkey V. R., Owens V. N., Lee D. K. (2008), Management of Warm–Season Grass Mixtures for Biomass Production in South Dakota, U. S. A., “Bioresource Technology”, 99: 609–617
Google Scholar
Nixon P. M. I. (2001), Effects of Landfill Leachate on the Biomass Production of Miscanthus, “Aspects of Applied Biology”, 65: 123–130
Google Scholar
Nixon P. M. I., Boocock H., and Bullard M. J. (2001), An Evaluation of Planting Options for Miscanthus, “Aspects of Applied Biology”, 65: 123–130
Google Scholar
Nixon P. M. I. and Bullard M. J. (1997), The Effect of Fertilizer, Variety and Harvesting Timing on the Yield of Phalaris arundinacea L., “Aspects of Applied Biology”, 49: 237–240
Google Scholar
OECD–FAO, (2011), Agricultural Outlook 2011–2020, OECD Publishing, Paris
Google Scholar
OECD–FAO, (2007), Agricultural Outlook 2007–2016, OECD Publishing, Paris
Google Scholar
Osińsko W. (1996), Trzcinnik olbrzymi (Miscanthus sinensis ‘gigantheus’) – nowy perspektywiczny surowiec włóknisty i możliwości jego wykorzystania (Miscanthus sinensis gigantheus: New perspectives for fibrous raw material and its uses), “Przemysł drzewny (The Wood Industry)”, 11 (47) 31–34
Google Scholar
Ozimek T. (2009), Wykorzystanie roślin do oczyszczania odcieków z wysypisk odpadów (Using plants to treat leachate from dumps), „Wiadomości ekologiczne (Ecology News)”, LV 2: 62–74
Google Scholar
Parrish D. J. and Fike J. H. (2005), The Biology and Agronomy of Switchgrass for Biofuels, “Critical Reviews in Plant Sciences”, 24: 423
Google Scholar
Perrin, R. K., Vogel K. P., Schmer M. R., and Mitchell R. B. (2008), Farm–scale Production Cost of Switchgrass for Biomass, “BioEnergy Research”, 1:91–97
Google Scholar
Podlaski S., Chołuj D., and Wiśniewski G. (2010), Produkcja biomasy z roślin energetycznych” (Biomass production using energy plants), “Postępy Nauk Rolniczych (Progress in the Agricultural Sciences)”, 2: 163–174
Google Scholar
Remlein–Starosta D. and Nijak K. (2007), Ślazowiec pensylwański – wstępne wyniki badań nad możliwościami ochrony przed agrofagami (The Virginia mallow: Preliminary results of research on the potential for protection against agrophages), “Postępy w Ochronie Roślin (Progress in Plant Protection)”, 47 (4) 358–362
Google Scholar
Rockwood D. L., Naidu C. V., Carter D. R., Rahmani M., Spriggs T. A., Lin C., Alker G. R., Isebrands J. G., and Segrest S. A. (2004), Short–rotation Woody Crops and Phytoremediation: Opportunities for Agroforestry?, ”Agroforestry Systems”, 61: 51–63
Google Scholar
Romanowska–Duda Z. B., Grzesik M., and Piotrowski K. (2009), Ecological Utilization of Sewage Sludge in Production of Virginia Fanpetals (Sida hermaphrodita Rusby): Biomass as the Source of Renewable Energy, Proceedings of the 2nd International Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE) and SECOTOX Conference, Mykonos, edited by A. Kungolos, K. Aravossis, A. Karagiannidis, and P. Samaras, GRAFIMA Publishers, D. Gounari, 62–68, Thessaloniki, ISBN 978–960–6865–09–1, vol. III, p. 1261–1266.
Google Scholar
Sanderson M. A. and Adler P. R. (2008), Perennial Forages as Second Generation Bioenergy Crops, “International Journal of Molecular Sciences”, 9: 768–788
Google Scholar
Schmer M. R., Vogel K. P., Mitchell R. B., Moser L. E., Eskridge K. M., and Perrin R. K. (2006), Establishment Stand Thresholds for Switchgrass Grown as a Bioenergy Crop, “Crop Science”, 46: 157– 161
Google Scholar
Schmer M. R., Vogel K. P., Mitchell R. B., and Perrin R. K. (2008), Net Energy of Cellulosic Ethanol from Switchgrass (Electronic Resource), “Proceedings of the National Academy of Sciences, U. S. A.”, 105: 464–469
Google Scholar
Scurlock J. M. O. (1999), Miscanthus: A Review of European Experience with a Novel Energy Crop, Environmental Science Division, Publication 4845
Google Scholar
Shrestha R. K. and Lal R. (2006), Ecosystem Carbon Budgeting and Soil Carbon Sequestration In Reclaimed Mine Soil, “Environment International”, 32: 781–796
Google Scholar
Sokhansanj S., Kumar A., and Turhollowi A. F. (2006), Development and Implementation of Integrated Biomass Supply Analysis and Logistics Model (IBSAL), “Biomass and Bioenergy”, 30: 838–847
Google Scholar
Stolarski M. (2003), Wszystko o wierzbie (Everything about the willow), „Czysta Energia (Clean Energy)”, 10: 32–33
Google Scholar
Stolarski M., Szczukowski S., and Tworkowski J. (2007), Ocena produktywności wierzby (Salix spp.) pozyskiwanej w krótkich rotacjach w dolinie dolnej Wisły (Assessment of the productivity of the willow (Salix spp.) in short–rotation in the lower Vistula River valley), Biomasa dla elektroenergetyki i ciepłownictwa (Biomass for Power and Thermal Engineering), Warsaw, pp. 93–99
Google Scholar
Stolarski M., Kisiel R., Szczukowski S., and Tworkowski J. (2008), Koszty likwidacji plantacji wierzby krzewiastej (The costs of liquidation of willow shrub plantations), “Roczniki Nauk Rolniczych (Annals of the Agricultural Sciences)”, Series G, Vol. 94, Tome 92,172–177
Google Scholar
Stuczyński T., Łopatka A., Faber A., Czaban P., Kowalik M., Koza P., Korzeniowska–Pucułek R., and Siebielec G., (2008), Prognoza wykorzystania przestrzeni rolniczej dla produkcji roślin na cele energetyczne (Projections of the use of agricultural space for the production of energy plants), “Studia i Raporty IUNG–PIB” (Institute of Soil Science and Plant Cultivation, A State Research Institute, Studies and Reports), 11, pp. 24–43
Google Scholar
Szczukowski S. and Stolarski M. (2005c), Charakterystyka biomasy wierzby wiciowej jako paliwa (Characteristics of the biomass of the common osier as a fuel), “Wieś Jutra (Rural Tomorrow’)”, 7 (84) 34–35
Google Scholar
Szczukowski S., Tworkowski J., and Stolarski M. (2004), Wierzba energetyczna (The energy willow), Plantpress Publishers, Cracow, p. 46
Google Scholar
Szczukowski S., Tworkowski J., Stolarski M., and Grzelczyk M. (2005a), Produktywność wierzb krzewiastych pozyskiwanych w jednorocznych cyklach zbioru” (The productivity of willow shrubs received in one–year harvesting cycles), “Acta Scentiarum Polonorum, Agricultura”, 4 (1) 141–151
Google Scholar
Szczukowski S., Tworkowski J., Stolarski M., and Grzelczyk M. (2005b), Produktywność roślin wierzby (Salix spp.) i charakterystyka pozyskiwanej biomasy jako paliwa” (The productivity of the willow plant (Salix spp.) and characteristics of biomass received as fuel), “Zeszyty Problemowe Postępów Nauk Rolniczych (Progress in the Agricultural Sciences: Problem Papers)”, 507: 495– 503
Google Scholar
Szyszlak J., Piekarski W., Krzaczek P., and Borkowska H. (2006), Ocena wartości energetycznych ślazowca pensylwańskiego dla różnych grubości pędów rośliny (Assessment of the energy value of the Virgnia mallow for various plant shoot diameters), “Inżynieria Rolnicza (Agricultural Engineering)”, 6: 311–318
Google Scholar
Tober D., Duckwitz W., Jensen N., and Knudson M. (2007), Switchgrass Biomass Trials in North Dakota, South Dakota, and Minnesota, USDA–NRCS, Bismark, North Dakota
Google Scholar
Tworkowski J., Kuś J., Szczukowski S., and Stolarski M. (2010), Produkcyjność roślin uprawianych na cele energetyczne (The productivity of plants cultivated for energy), [in:] Bocian P., Golec T., and Rakowski, Nowoczesne technologie pozyskiwania i energetycznego wykorzystania biomasy (Modern technology for harvesting and utilizing biomass for energy), Warsaw, pp. 34 – 49, ISBN 978–83–925924–6–4
Google Scholar
UWM (2011), University of Warmia and Mazury in Olsztyn, http://www.uwm.edu.pl/khrin/wierzba.htm
Google Scholar
Vattenfall (2009), Opłacalność produkcji roślin energetycznych (The profitability of energy plant production), www.vattenfall.pl/pl/oplacalnosc–produkcji.htm
Google Scholar
Vogel K. P. (2000), Improving Warm–Season Forage Grasses Using Selection, Breeding, and Biotechnology pp. 83–106, [in:] B. E. Anderson and K. J. Moore (Editors), Native Warm–Season Grasses: Research Trends and Issues, CSSA special publicatiobn no. 30, Crop Science Society of America, Madison, Wisconsin
Google Scholar
Vogel K. P., Hopkins A. A., Moore K. J., Johnson K. D., and Carlson I. T. (1996), Registration of ‘Shawnee’ Switchgrass, “Crop Science”, 36: 1713
Google Scholar
Vogel K. P., Jung H. J. G. (2001), Genetic Modification of Herbaceous Plants for Feed and Fuel, “Critical Reviews in Plant Sciences”, 20: 15–49
Google Scholar
Wersocki S. (2008), Badania dostępności tlenu w higienizacji osadu czynnego nadmiernego z wykorzystaniem trzciny Miscanthus jak materiału strukturotwórczego (Research into the availability of oxygen in the hygienization of activated sludge using Micanthus cane as a structure–generating material), doctoral dissertation under the direction of Prof. Jan Hupka, Ph.D., Habil, Chair of Chemical Technology, Gdańsk University of Technology, Gdańsk, 2008
Google Scholar
Zvereva E., Kozlov M., and Haukioja E. (1997), Stress Responses of Salix borealis to Pollution and Defoliation, “Journal of Applied Ecology”, 34: 1387–1396
Google Scholar
Brouglieri M. and Liberti L. (2008), Optimal Running and Planning of a Biomass–based Energy Production Process, “Energy Policy”, 36:2430–2438
Google Scholar
Dunnett A., Adjiman C. S., and Shah N. A. (2008), A Spatially Explicit Whole–System Model of the Lignocellulosic Bioethanol Supply Chain: An Assessment of Decentralized Processing Potential, “Biotechnology for Biofuels”, 1:13
Google Scholar
Sokhansanj S., Kumar A., Turhollowi A. F. (2006), Development and Implementation of Integrated Biomass Supply Analysis And Logistics Model (IBSAL), “Biomass and Bioenergy”, 30: 838–847
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.