Zróżnicowanie poziomu zanieczyszczenia powietrza i jego uwarunkowań techniczno-ekonomicznych: analiza skupień dla krajów UE–27
DOI:
https://doi.org/10.18778/1508-2008.27.21Słowa kluczowe:
zanieczyszczenie powietrza, emisja gazów cieplarnianych, emisja gazów zakwaszających, analiza skupień, kraje Unii EuropejskiejAbstrakt
Ciągłe pogarszanie się jakości środowiska naturalnego jest jednym z najważniejszych globalnych wyzwań, przed którymi stoi obecnie ludzkość. Celem niniejszego badania była analiza różnic i podobieństw między krajami UE–27 w zakresie emisji zanieczyszczeń powietrza (gazów cieplarnianych i gazów zakwaszających) oraz ich uwarunkowań techniczno-ekonomicznych, obejmujących czynniki ekonomiczne, energetyczne, instytucjonalne oraz poziom innowacyjności. Analizę przeprowadzono na podstawie dziewięciu wskaźników ilustrujących emisje zanieczyszczeń oraz piętnastu zmiennych reprezentujących determinanty zanieczyszczenia powietrza, wykorzystując ich średnie wartości z lat 2015–2020. Do zidentyfikowania podgrup krajów o podobnych wzorcach zastosowano analizę skupień. Otrzymane wyniki wskazują na znaczące zróżnicowanie krajów UE zarówno pod względem poziomów zanieczyszczenia powietrza, jak i determinant emisji. Przeprowadzona analiza ujawniła istotne różnice pomiędzy wschodnimi krajami UE, wykazującymi wspólne wzorce zanieczyszczeń powietrza i determinant emisji, oraz zachodnimi krajami UE, które cechowały się większym zróżnicowaniem pod względem analizowanych cech. W świetle uzyskanych wyników twierdzenie o zacofanych i zanieczyszczonych nowych państwach członkowskich UE w porównaniu z bardziej zaawansowanymi i nieskażonymi środowiskowo starymi krajami UE wydaje się nadmiernie upraszczać rzeczywistość. Nasze wyniki stanowią wkład w toczącą się dyskusję na temat jakości środowiska. Wskazują na potrzebę i przestrzeń do podjęcia działań w obszarze czynników wpływających na zanieczyszczenie powietrza w celu zahamowania degradacji środowiska naturalnego. Niemniej jednak, ze względu na ujawnioną heterogeniczność między krajami, wysiłki powinny być dostosowane do ich specyfiki.
Pobrania
Bibliografia
Aghel, B., Sahraie, S., Heidaryan, E. (2020), Carbon dioxide desorption from aqueous solutions of monoethanolamine and diethanolamine in a microchannel reactor, “Separation and Purification Technology”, 237, 116390, https://doi.org/10.1016/j.seppur.2019.116390
Google Scholar
DOI: https://doi.org/10.1016/j.seppur.2019.116390
Arminen, H., Menegaki, A.N. (2019), Corruption, climate and the energy-environment growth nexus, “Energy Economics”, 80, pp. 621–634, https://doi.org/10.1016/j.eneco.2019.02.009
Google Scholar
DOI: https://doi.org/10.1016/j.eneco.2019.02.009
Aung, T.S., Fischer, T.B., Azmi, A.S. (2020), Are large-scale dams environmentally detrimental? Life-cycle environmental consequences of mega-hydropower plants in Myanmar, “The International Journal of Life Cycle Assessment”, 25, pp. 1749–1766, https://doi.org/10.1007/s11367-020-01795-9
Google Scholar
DOI: https://doi.org/10.1007/s11367-020-01795-9
Bai, C., Feng, C., Yan, H., Yi, X., Chen, Z., Wei, W. (2020), Will income inequality influence the abatement effect of renewable energy technological innovation on carbon dioxide emissions?, “Journal of Environmental Management”, 264, 110482, https://doi.org/10.1016/j.jenvman.2020.110482
Google Scholar
DOI: https://doi.org/10.1016/j.jenvman.2020.110482
Bekun, F.V., Gyamfi, B.A., Onifade, S.T., Agboola, M.O. (2021), Beyond the environmental Kuznets Curve in E7 economies: accounting for the combined impacts of institutional quality and renewables, “Journal of Cleaner Production”, 314, 127924, https://doi.org/10.1016/j.jclepro.2021.127924
Google Scholar
DOI: https://doi.org/10.1016/j.jclepro.2021.127924
Cheng, C., Ren, X., Wang, Z., Yan, C. (2019), Heterogeneous impacts of renewable energy and environmental patents on CO2 emission – Evidence from the BRIICS, “Science of the Total Environment”, 668, pp. 1328–1338, https://doi.org/10.1016/j.scitotenv.2019.02.063
Google Scholar
DOI: https://doi.org/10.1016/j.scitotenv.2019.02.063
Cheng, C., Ren, X., Dong, K., Dong, X., Wang, Z. (2021), How does technological innovation mitigate CO2 emissions in OECD countries? Heterogeneous analysis using panel quantile regression, “Journal of Environmental Management”, 280, 111818, https://doi.org/10.1016/j.jenvman.2020.111818
Google Scholar
DOI: https://doi.org/10.1016/j.jenvman.2020.111818
Chien, F., Anwar, A., Hsu, C.-C., Sharif, A., Razzaq, A., Sinha, A. (2021), The role of information and communication technology in encountering environmental degradation: Proposing an SDG framework for the BRICS countries, “Technology in Society”, 65, 101587, https://doi.org/10.1016/j.techsoc.2021.101587
Google Scholar
DOI: https://doi.org/10.1016/j.techsoc.2021.101587
Cifuentes-Faura, J. (2022), European Union policies and their role in combating climate change over the years, “Air Quality, Atmosphere & Health”, 15, pp. 1333–1340, https://doi.org/10.1007/s11869-022-01156-5
Google Scholar
DOI: https://doi.org/10.1007/s11869-022-01156-5
Consolidated versions of the Treaty on European Union and the Treaty on the functioning of the European Union (2012/c 326/01), https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:12012E/TXT (accessed: 28.04.2023).
Google Scholar
Du, K., Li, P., Yan, Z. (2019), Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from patent data, “Technological Forecasting and Social Change”, 146, pp. 297–303, https://doi.org/10.1016/j.techfore.2019.06.010
Google Scholar
DOI: https://doi.org/10.1016/j.techfore.2019.06.010
Ehigiamusoe, K.U., Lean, H.H., Smyth, R. (2020), The moderating role of energy consumption in the carbon emissions-income nexus in middle-income countries, “Applied Energy”, 261, 114215, https://doi.org/10.1016/j.apenergy.2019.114215
Google Scholar
DOI: https://doi.org/10.1016/j.apenergy.2019.114215
European Environment Agency (2023), Europe’s air quality status 2023, https://www.eea.europa.eu/publications/europes-air-quality-status-2023 (accessed: 28.04.2023).
Google Scholar
European Parliament (2018), Climate change in Europe: facts and figures, https://www.europarl.europa.eu/news/en/headlines/priorities/climate-change/20180703STO07123/climate-change-in-europe-facts-and-figures (accessed: 26.04.2023).
Google Scholar
European Parliament (2023), Combating climate change, https://www.europarl.europa.eu/factsheets/en/sheet/72/combating-climate-change (accessed: 26.04.2023).
Google Scholar
Eurostat (2023), Key figures on the EU in the world. 2023 edition, https://doi.org/10.2785/515035
Google Scholar
Gholipour, H.F., Farzanegan, M.R. (2018), Institutions and the effectiveness of expenditures on environmental protection: evidence from Middle Eastern countries, “Constitutional Political Economy”, 29 (1), pp. 20–39, https://doi.org/10.1007/s10602-017-9246-x
Google Scholar
DOI: https://doi.org/10.1007/s10602-017-9246-x
Govender, P., Sivakumar, V. (2020), Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019), “Atmospheric Pollution Research”, 11 (1), pp. 40–56, https://doi.org/10.1016/j.apr.2019.09.009
Google Scholar
DOI: https://doi.org/10.1016/j.apr.2019.09.009
Guterres, I. (2022), Enforcing Environmental Policy – the role of the European Union, “UNIO – EU Law Journal”, 8 (1), pp. 32–52, https://doi.org/10.21814/unio.8.1.4522
Google Scholar
DOI: https://doi.org/10.21814/unio.8.1.4522
Hall, B.H. (2007), Measuring the returns to R&D: The depreciation problem, “NBER Working Paper”, 13473, https://doi.org/10.3386/w13473
Google Scholar
DOI: https://doi.org/10.3386/w13473
Hastie, T., Tibshirani, R., Friedman, J.H. (2009), The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, New York, https://doi.org/10.1007/978-0-387-84858-7
Google Scholar
DOI: https://doi.org/10.1007/978-0-387-84858-7
Işık, C., Ongan, S., Özdemir, D. (2019), Testing the EKC hypothesis for ten US states: an application of heterogeneous panel estimation method, “Environmental Science and Pollution Research”, 26, pp. 10846–10853, https://doi.org/10.1007/s11356-019-04514-6
Google Scholar
DOI: https://doi.org/10.1007/s11356-019-04514-6
Jajuga, K., Walesiak, M. (2000), Standardisation of Data Set under Different Measurement Scales, [in:] R. Decker, W. Gaul (eds.), Classification and Information Processing at the Turn of the Millennium, Springer-Verlag, Berlin–Heidelberg, pp. 105–112, https://doi.org/10.1007/978-3-642-57280-7_11
Google Scholar
DOI: https://doi.org/10.1007/978-3-642-57280-7_11
Jinqiao, L., Maneengam, A., Saleem, F., Mukarram, S.S. (2022), Investigating the role of financial development and technology innovation in climate change: evidence from emerging seven countries, “Economic Research – Ekonomska Istraživanja”, 35 (1), pp. 3940–3960, https://doi.org/10.1080/1331677X.2021.2007152
Google Scholar
DOI: https://doi.org/10.1080/1331677X.2021.2007152
Karim, S., Appiah, M., Naeem, M.A., Lucey, B.M., Li, M. (2022), Modelling the role of institutional quality on carbon emissions in Sub-Saharan African countries, “Renewable Energy”, 198, pp. 213–221, https://doi.org/10.1016/j.renene.2022.08.074
Google Scholar
DOI: https://doi.org/10.1016/j.renene.2022.08.074
Kaufmann, D., Kraay, A. (2023), Worldwide Governance Indicators, 2023 Update, https://www.govindicators.org (accessed: 27.10.2023).
Google Scholar
Kaufmann, D., Kraay, A., Mastruzzi, M. (2010), The Worldwide Governance Indicators: Methodology and Analytical Issues, “World Bank Policy Research Working Paper”, 5430, https://ssrn.com/abstract=1682130 (accessed: 27.10.2023).
Google Scholar
Khan, H., Weili, L., Khan, I. (2022), Institutional quality, financial development and the influence of environmental factors on carbon emissions: evidence from a global perspective, “Environmental Science and Pollution Research”, 29 (9), pp. 13356–13368, https://doi.org/10.1007/s11356-021-16626-z
Google Scholar
DOI: https://doi.org/10.1007/s11356-021-16626-z
Kula, F., Ünlü, F. (2019), Ecological Innovation Efforts and Performances: An Empirical Analysis, [in]: M. Shahbaz, D. Balsalobre (eds.), Energy and Environmental Strategies in the Era of Globalization, Springer, Cham, pp. 221–250, https://doi.org/10.1007/978-3-030-06001-5_9
Google Scholar
DOI: https://doi.org/10.1007/978-3-030-06001-5_9
Lingyan, M., Zhao, Z., Malik, H.A., Razzaq, A., An, H., Hassan, M. (2022), Asymmetric impact of fiscal decentralization and environmental innovation on carbon emissions: Evidence from highly decentralized countries, “Energy & Environment”, 33 (4), pp. 752–782, https://doi.org/10.1177/0958305X211018453
Google Scholar
DOI: https://doi.org/10.1177/0958305X211018453
Liu, X., Bae, J. (2018), Urbanization and industrialization impact of CO2 emissions in China, “Journal of Cleaner Production”, 172, pp. 178–186, https://doi.org/10.1016/j.jclepro.2017.10.156
Google Scholar
DOI: https://doi.org/10.1016/j.jclepro.2017.10.156
Mehmood, U., Tariq, S., Ul-Haq, Z., Meo, M.S. (2021), Does the modifying role of institutional quality remains homogeneous in GDP-CO2 emission nexus? New evidence from ARDL approach, “Environmental Science and Pollution Research”, 28, pp. 10167–10174, https://doi.org/10.1007/s11356-020-11293-y
Google Scholar
DOI: https://doi.org/10.1007/s11356-020-11293-y
Nielsen, F. (2016), Introduction to HPC with MPI for Data Science, Springer, Cham, https://doi.org/10.1007/978-3-319-21903-5
Google Scholar
DOI: https://doi.org/10.1007/978-3-319-21903-5
OECD (2008), Handbook on Constructing Composite Indicators: Methodology and User Guide, OECD Publishing, Paris, https://doi.org/10.1787/9789264043466-en
Google Scholar
DOI: https://doi.org/10.1787/9789264043466-en
Ongan, S., Isik, C., Ozdemir, D. (2020), Economic growth and environmental degradation: evidence from the US case environmental Kuznets curve hypothesis with application of decomposition, “Journal of Environmental Economics and Policy”, 10 (1), pp. 14–21, https://doi.org/10.1080/21606544.2020.1756419
Google Scholar
DOI: https://doi.org/10.1080/21606544.2020.1756419
Piva, M., Vivarelli, M. (2018), Technological change and employment: is Europe ready for the challenge?, “Eurasian Business Review”, 8 (1), pp. 13–32, https://doi.org/10.1007/s40821-017-0100-x
Google Scholar
DOI: https://doi.org/10.1007/s40821-017-0100-x
Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No. 401/2009 and (EU) 2018/1999 (‘European Climate Law’), https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021R1119 (accessed: 27.04.2023).
Google Scholar
Shan, S., Genç, S.Y., Kamran, H.W., Dinca, G. (2021), Role of green technology innovation and renewable energy in carbon neutrality: A sustainable investigation from Turkey, “Journal of Environmental Management”, 294, 113004, https://doi.org/10.1016/j.jenvman.2021.113004
Google Scholar
DOI: https://doi.org/10.1016/j.jenvman.2021.113004
Singh, A., Agrawal, M. (2008), Acid rain and its ecological consequences, “Journal of Environmental Biology”, 29 (1), pp. 15–24.
Google Scholar
Wang, Q., Yang, T., Li, R. (2023), Does income inequality reshape the environmental Kuznets curve (EKC) hypothesis? A nonlinear panel data analysis, “Environmental Research”, 216, 114575, https://doi.org/10.1016/j.envres.2022.114575
Google Scholar
DOI: https://doi.org/10.1016/j.envres.2022.114575
Wang, S., Zeng, J., Liu, X. (2019), Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach, “Renewable and Sustainable Energy Reviews”, 103, pp. 140–150, https://doi.org/10.1016/j.rser.2018.12.046
Google Scholar
DOI: https://doi.org/10.1016/j.rser.2018.12.046
Wawrzyniak, D., Doryń, W. (2020), Does the quality of institutions modify the economic growth-carbon dioxide emissions nexus? Evidence from a group of emerging and developing countries, “Economic Research – Ekonomska Istraživanja”, 33 (1), pp. 124–144, https://doi.org/10.1080/1331677X.2019.1708770
Google Scholar
DOI: https://doi.org/10.1080/1331677X.2019.1708770
Weina, D., Gilli, M., Mazzanti, M., Nicolli, F. (2016), Green inventions and greenhouse gas emission dynamics: a close examination of provincial Italian data, “Environmental Economics and Policy Studies”, 18 (2), pp. 247–263, https://doi.org/10.1007/s10018-015-0126-1
Google Scholar
DOI: https://doi.org/10.1007/s10018-015-0126-1
World Health Organization (2021), WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide, Geneva, https://apps.who.int/iris/handle/10665/345329 (accessed: 27.10.2023).
Google Scholar
Wu, W.L. (2017), Institutional Quality and Air Pollution: International Evidence, “International Journal of Business and Economics”, 16 (1), pp. 49–74, https://ijbe.fcu.edu.tw/past_issues/NO.16-1/pdf/vol_16-1-4.pdf (accessed: 18.04.2023).
Google Scholar
Yildirim, J., Alpaslan, B., Eker, E.E. (2021), The role of social capital in environmental protection efforts: Evidence from Turkey, “Journal of Applied Statistics”, 48 (13–15), pp. 2626–2642, https://doi.org/10.1080/02664763.2020.1843609
Google Scholar
DOI: https://doi.org/10.1080/02664763.2020.1843609
Zhang, Y.-J., Liu, Z., Zhang, H., Tan, T.-D. (2014), The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China, “Natural Hazards”, 73, pp. 579–595, https://doi.org/10.1007/s11069-014-1091-x
Google Scholar
DOI: https://doi.org/10.1007/s11069-014-1091-x
Zheng, Y.M., Lv, Q., Wang, Y.D. (2022), Economic development, technological progress, and provincial carbon emissions intensity: empirical research based on the threshold panel model, “Applied Economics”, 54 (30), pp. 3495–3504, https://doi.org/10.1080/00036846.2021.2009760
Google Scholar
DOI: https://doi.org/10.1080/00036846.2021.2009760
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.