Przestrzenna regresja kwantylowa w analizie długości życia w krajach Unii Europejskiej

Autor

  • Grażyna Trzpiot University of Economics in Katowice, Faculty of Informatics and Communication, Department of Demography and Economic Statistics
  • Agnieszka Orwat-Acedańska

DOI:

https://doi.org/10.1515/cer-2016-0044

Słowa kluczowe:

regresja kwantylowa, wieloraka kwantylowa autoregresja przestrzenna, analiza przestrzenna, długość życia w zdrowiu

Abstrakt

Celem pracy jest badanie wpływu wybranych czynników na średnią długość życia z zdrowiu kobiet i mężczyzn w krajach UE. Ze względu na fakt, że kraje Unii Europejskiej charakteryzuje silne zróżnicowanie pod względem średniej długości życia w zdrowiu oraz jakości życia obywateli, stosujemy w pracy modele wielorakiej kwantylowej autoregresji przestrzennej. Regresja kwantylowa umożliwia analizę zależności pomiędzy zmiennymi w różnych kwantylach rozkładu zmiennej niezależnej. Ponadto narzędzie to jest odporne na założenie klasycznej regresji dotyczące postaci wielowymiarowego rozkładu składnika losowego. Estymacji punktowej parametrów modeli dokonano przy użyciu zmiennych instrumentalnych (Kim, Muller 2004), natomiast do estymacji przedziałowej i weryfikacji hipotezy istotności parametrów wykorzystano metodę bootstrap.

Pobrania

Brak dostępnych danych do wyświetlenia.

Bibliografia

Anselin L. (1988), Spatial Econometrics: Methods and Models, Springer, Berlin-Heidelberg.
Google Scholar

Chernozhukov V., Chansen C. (2006), Instrumental Quantile Regression Inference for Structural And Treatment Effect Models, ‘Journal of Econometrics’, Elsevier, Vol. 127.
Google Scholar

Gromulska L., Wysocki M., Goryński P. (2008), Lata przeżyte w zdrowiu (Healthy Life Years, HLY) – zalecany przez Unię Europejską syntetyczny wskaźnik sytuacji zdrowotnej ludności, ‘Przegląd Epidemiologiczny’, PZH, Vol. 62(4).
Google Scholar

Kim T. H., Muller C. (2004), Two-stage quantile regression when the first stage is based on quantile regression, ‘Econometrics Journal’, Wiley, Vol. 7.
Google Scholar

Koenker R., Bassett B. (1978), Regression Quantiles, ‘Econometrica’, Wiley, Vol. 46.
Google Scholar

CSO (2015), Life Expectancy Tables of Poland in 2014, Central Statistical Office, Warsaw.
Google Scholar

Kostov P. (2009), A spatial quantile regression hedonic model of agricultural land prices, ‘Spatial Economic Analysis’, Taylor & Francis, Vol. 4(1).
Google Scholar

Lee L. F. (2002), Consistency and efficiency of least squares estimation for mixed regressive, spatial autoregressive models, ‘Econometric Theory’, Cambridge University Press, Vol. 18(2).
Google Scholar

Lee L. F. (2007), GMM and 2SLS estimation of mixed regressive, spatial autoregressive models, ‘Journal of Econometrics’, Elsevier, Vol. 137(2).
Google Scholar

LeSage J. P., Pace R. K. (2009), Introduction to spatial econometrics, CRC Press, Boca Raton.
Google Scholar

LeSage J. (1997), Bayesian estimation of spatial autoregressive models, ‘International Regional Science Review’, SAGE, Vol. 20(1–2).
Google Scholar

Lum K., Gelfand A. (2012), Spatial quantile multiple regression using the asymmetric Laplace process, ‘Bayesian Analysis’, International Society for Bayesian Analysis, Vol. 7(2).
Google Scholar

Orwat-Acedańska A., Trzpiot G. (2011), The classification of Polish mutual balanced funds on the management style – quantile regression approach, ‘Theory and applications of quantitative methods. Econometrics’, University of Economics in Wrocław, Vol. 31(194).
Google Scholar

Orwat-Acedańska A., Trzpiot G. (2016), Spatial quantile regression in analysis of mortality, ‘Folia Oeconomica’, University of Łódź, in print.
Google Scholar

Portnoy S., Koenker R. (1997), The Gaussian Hare and the Laplacian Tortoise: Computability of Squared-Error Versus Absolute-Error Estimators, ‘Statistical Science’, Institute of Mathematical Statistics, Vol. 12.
Google Scholar

Robine J-M., Jagger C., Egidi V. (2000), Selection of a Coherent Set of Health Indicators. A First Step Towards A User's Guide to Health Expectancies for the European Union, Euro-REVES, Montpellier.
Google Scholar

Suchecki B. (2010), Spatial Econometrics, Beck, Warszawa.
Google Scholar

Trzpiot G. (2008), The implementation of quantile regression methodology in VaR estimation (in polish), ‘Studies and researches of faculty of economics and management’ University of Szczecin, 316–323.
Google Scholar

Trzpiot G. (2009a), Quantile regression model versus factor model estimation, ‘Financial investments and insurances – world trends and polish market’, University of Economics in Wrocław, Vol. 60.
Google Scholar

Trzpiot G. (2009b), Estimation methods for quantile regression, ‘Economic Studies’, University of Economics in Katowice, Vol. 53.
Google Scholar

Trzpiot G. (2010), Quantile regression model of return rate relation – volatility for some Warsaw Stock Exchange indexes, (in polish), ‘Finances, financial markets and insurances. Capital market’, University of Szczecin, Vol. 28.
Google Scholar

Trzpiot G. (2012), Spatial Quantile Regression, ‘Comparative Economic Research. Central and Eastern Europe’, University of Łódź, Vol. 15(4).
Google Scholar

Wróblewska W. (2008), Sumaryczne miary stanu zdrowia populacji, ‘Studia Demograficzne’, PAN, Vol. 153–154(1–2).
Google Scholar

Opublikowane

2017-03-30

Jak cytować

Trzpiot, G., & Orwat-Acedańska, A. (2017). Przestrzenna regresja kwantylowa w analizie długości życia w krajach Unii Europejskiej. Comparative Economic Research. Central and Eastern Europe, 19(5), 179–199. https://doi.org/10.1515/cer-2016-0044

Numer

Dział

Artykuły