Bottom sediments of a spring watercourse as a filter for microplastic – on the example of the Młynówka in Stary Imielnik (municipality of Stryków) – preliminary studies

Authors

DOI:

https://doi.org/10.18778/1427-9711.24.01

Keywords:

Microplastic, riverbed sediments, hyporheic zone, vertical hydraulic gradient

Abstract

Microplastic (MP) are currently one of the most serious and emerging environmental problems that involve rivers and streams with particular clarity. In the present study of the spring-fed watercourse bed sediments, the presence of microplastic particles was demonstrated and the pathway of their penetration into this environment was identified. The presence of microplastic in the form of fine plastic particles, taking the shape of fibres and fragments in dark and light colours within the hyporheic zone was found. This occurs directly beneath the lowland watercourses with sandy bottoms. There, groundwater is in contact with surface water and mixing takes place. This is an important ecological zone, where chemical and physical processes are crucial to the river environment. In the hyporheic zone there is an exchange of nutrients and oxygen between river water and groundwater, which is crucial to the ecological health of the river and its surroundings. This zone can play an important role in the processes of microplastic transport and retention, as it is where microplastic is washed into the channel infiltration (downwelling) zones and sediment is deposited on the sand filter penetrated by the mixture of river water and groundwater.

Downloads

Download data is not yet available.

References

Battin T.J., Kaplan L.A., Newbold J.D., Hendricks S.P. 2003. A mixing model analysis of stream solute dynamics and the contribution of hyporheic zone to ecosystem function. Freshwater Biology 48: 995–1014.
Google Scholar DOI: https://doi.org/10.1046/j.1365-2427.2003.01062.x

Büks F., Kaupenjohann M. 2020. Global concentrations of microplastics in soils – a review. Soil 6: 649–662.
Google Scholar DOI: https://doi.org/10.5194/soil-6-649-2020

Carpenter E., Smith K. 1972. Plastics on the Sargasso Sea Surface. Science 175 (4027): 1240–1241.
Google Scholar DOI: https://doi.org/10.1126/science.175.4027.1240

Dalvand M., Hamidian A.H. 2023. Occurrence and distribution of microplastics in wetlands. Science of the Total Environment 862.
Google Scholar DOI: https://doi.org/10.1016/j.scitotenv.2022.160740

Emmerik T., Kieu-Le T.C., Loozen M., Oeveren K., Strady E., Bui X.T., Egger M., Gasperi J., Laberton L., Ngu-yen P.D., Schwarz A., Slat B., Tassin B. 2018. A Methodology to Characterize Riverine Macroplastic Emission Into the Ocean. Frontiers in Marine Science 5.
Google Scholar DOI: https://doi.org/10.3389/fmars.2018.00372

Fischer H., Kloep F., Wilzcek S., Pusch M.T. 2005. A river’s liver-microbial processes within the hyporheic zone of a large low-land river. Biogeochemistry 76: 349–371.
Google Scholar DOI: https://doi.org/10.1007/s10533-005-6896-y

Ghinassi M., Michielotto A., Uguagliati F., Zattin M. 2023. Mechanisms of microplastics trapping in river sediments: Insights from the Arno river (Tuscany, Italy). Science of The Total Environment 866: 161273.
Google Scholar DOI: https://doi.org/10.1016/j.scitotenv.2022.161273

Gooseff M.N. 2010. Defining Hyporheic Zones – Advancing Our Conceptual and Operational Definitions of Where Stream Water and Groundwater Meet. Geography Compass 4 (4): 945–955.
Google Scholar DOI: https://doi.org/10.1111/j.1749-8198.2010.00364.x

Grulke R. 2022. Wymiana wód powierzchniowych i podziemnych w korycie północnego ramienia Strugi Dobieszkowskiej [Praca magisterska, Uniwersytet Łódzki]. Archiwum Prac Dyplomowych Uniwersytetu Łódzkiego.
Google Scholar

Grulke R., Górowski J., Markowicz P., Ziułkiewicz M. 2025. Hydrochemical aspects of river and groundwater exchange in the bed of a spring stream in the suburban area of the Łódź agglomeration (in preparation – in review).
Google Scholar

Horton A., Svendsen C., Williams R., Spurgeon D., Lahive E. 2016. Large microplastic particles in sediments of tributaries of the River Thames, UK – Abundance, sources and methods for effective quantification. Marine Pollution Bulletin.
Google Scholar DOI: https://doi.org/10.1016/B978-0-12-812271-6.00182-4

Jermołowicz P. 2019. Problematyka zagęszczania i stabilizacji gruntów w budownictwie. Technologie i ich skuteczność. Zasady projektowania i wykonawstwa (materiały szkoleniowe). Opole.
Google Scholar

Jokiel P., Moniewski P., Ziułkiewicz M. (Ed.) 2007. Źródła Polski – wybrane problemy krenologiczne. Łódź: Regina Poloniae, Częstochowa.
Google Scholar

Jokiel P., Tomalski P. 2005. Odpływ oraz fizykochemiczne właściwości wód płynących w sąsiedztwie węzła autostrad A1 i A2 w okolicy Łodzi. Acta Scientiarum Polonorum. Formatio Circumiectus 4 (2): 3–20.
Google Scholar

Klimaszewski M. 1981. Geomorfologia. PWN, Warszawa.
Google Scholar

Lewandowski J., Arnon S., Banks E., Batelaan O., Betterle A., Broecker T., Coll C. Drummond J.D., Garcia J.G., Galloway J., Gomez-Velez J., Grabowski R.C., Herzog S.P., Hinkelmann R., Hӧhne A., Hollender J., Horn M.A., Jaeger A., Krause S., Lӧchner Prats A., Magliozzi C., Meinikmann K., Mojarrad B.B., Mueller B.M., Peralta-Maraver I., Popp A.L., Posselt M., Putchew A., Radke M., Raza M., Riml J., Robertson A., Rutere C., Schaper J.L., Schirmer M., Schulz H., Shanefield M., Singh T., Ward A.S., Wolke P., Wӧrman A., Wu L. 2019. Is the Hyporheic Zone Relevant beyond the Scientific Community? Water 11: 2230.
Google Scholar DOI: https://doi.org/10.3390/w11112230

Ling X., Yan Z., Lu G. 2022. Vertical transport and retention behavior of polystyrene nanoplastics in simulated hyporheic zone. Water Research 219.
Google Scholar DOI: https://doi.org/10.1016/j.watres.2022.118609

Liu M., Lu S., Song Y., Lei L., Hu J., Lv W., Zhou W., Cao C., Shi H., Yang X., He D. 2018.Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental Pollution 242 (Pt A): 855–862.
Google Scholar DOI: https://doi.org/10.1016/j.envpol.2018.07.051

Lwanga E.H., Mendoza J.V., Ku Quej W., de los Angeles Chi J., del Cid L.S., Chi C., Segura G.E., Gertsen H., Salánki T., van der Ploeg M., Koelmans B., Geissen V. 2017. Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports 7 (1): 14071.
Google Scholar DOI: https://doi.org/10.1038/s41598-017-14588-2

Macioszczyk A., Dobrzyński D. 2002. Hydrogeochemia strefy aktywnej wymiany wód Podziemnych. Wydawnictwo Naukowe PWN, Warszawa.
Google Scholar

Majer E., Roguski A., Grabowska A., Łukawska A. 2021. Oznaczanie, opis i klasyfikacja gruntów według norm PN-EN ISO 14688-1 oraz 14688-2. Przegląd Geologiczny 69 (12): 937–948.
Google Scholar

Mancini M., Francalanci S., Innocenti L., Solari L. 2023. Investigations on microplastic infiltration within natural riverbed sediments. Science of the Total Environment 904: 167256.
Google Scholar DOI: https://doi.org/10.1016/j.scitotenv.2023.167256

Marciniak M., Chudziak Ł. 2015. Nowa metoda pomiaru współczynnika filtracji osadów dennych. Przegląd Geologiczny 63 (10/2): 919–925.
Google Scholar

Mintening S.M., Int-Veen I., Lӧder M.G.J., Primpke S., Gerdts G. 2016. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Research 30: 1–8.
Google Scholar

Mossotti R., Fontana G.D., Anceschi A., Gasparin E., Battistini T. 2022. Preparation and Analysis of Standard Microplastics, [In:] Advances and Challenges in Microplastics: 1–16.
Google Scholar DOI: https://doi.org/10.5772/intechopen.108716

Myślińska E. 2019. Laboratoryjne badania gruntów i gleb (wydanie 3). Wydawnictwo Uniwersytetu Warszawskiego, Warszawa.
Google Scholar

Pisarczyk S. 2014. Gruntoznawstwo inżynierskie (wydanie drugie poprawione i uzupełnione). Wydawnictwo Naukowe PWN, Warszawa.
Google Scholar

Racinowski R., Szczypek T., Wach J. 2001. Prezentacja i interpretacja wyników badań uziarnienia osadów czwartorzędowych (wydanie drugie poprawione i uzupełnione). Nauki o Ziemi, Wydawnictwo Uniwersytetu Śląskiego, Katowice.
Google Scholar

Radford F., Horton A., Hudson M., Shaw P., Ian Williams I. 2023. Agricultural soils and microplastics: Are biosolids the problem? Frontiers in Soil Science 2: 1–14.
Google Scholar DOI: https://doi.org/10.3389/fsoil.2022.941837

Rosiek K. 2017. Wody opadowe jako przedmiot gospodarowania. Gospodarka w Praktyce i Teorii 3: 61–67.
Google Scholar DOI: https://doi.org/10.18778/1429-3730.44.05

Schütze B., Thomas D., Kraft M., Brunotte J., Kreuzig R. 2022. Comparison of different salt solutions for density separation of conventional and biodegradable microplastic from solid sample matrices. Environmental Science and Pollution Research 29: 81452–81467.
Google Scholar DOI: https://doi.org/10.1007/s11356-022-21474-6

Szymański A. 2007. Mechanika gruntów. Wydawnictw SGGW, Warszawa.
Google Scholar

Triska F.T., Duff J.H., Avanzino R.J. 1993. The role of water exchange between a stream channel and its hyporheic zone in nitrogen cycling at the terrestrial-aquatic surface. Hydrobiologia 251: 167–184.
Google Scholar DOI: https://doi.org/10.1007/978-94-011-1602-2_20

Vermeiren P., Muñoz C., Ikejima K. 2020. Microplastic identification and quantification from organic rich sediments: A validated laboratory protocol. Environmental Pollution 262: 114298.
Google Scholar DOI: https://doi.org/10.1016/j.envpol.2020.114298

Waldschläger K., Schüttrumpf H. 2020. Infiltration behavior od microplastic particles with different densities, size, and shapes-from glass spheres to natural sediments. Environmelntal Science Technology 54 (15): 9366–9373.
Google Scholar DOI: https://doi.org/10.1021/acs.est.0c01722

Wang Y., Okochi H., Tani Y., Hayami H., Minami Y., Katsumi N., Takeuchi M., Sorimachi A., Fujii Y., Kajino M., Adachi K., Ishihara Y., Iwamoto Y., Niida Y. 2023. Airborne hydrophilic microplastics in cloud water at high altitudes and their role in cloud formation. Environmental Chemistry Letters 21: 3055–3062.
Google Scholar DOI: https://doi.org/10.1007/s10311-023-01626-x

Wondzell S.M. 2011. The role of the hyporheic zone across stream networks. Hydrological Processes 25: 3525–3532.
Google Scholar DOI: https://doi.org/10.1002/hyp.8119

Yang L., Zhang Y., Kang S., Wang Z., Wu C. 2021. Microplastics in soil: A review on methods, occurrence, sources and potential risk. Science of The Total Environment 780: 146546.
Google Scholar DOI: https://doi.org/10.1016/j.scitotenv.2021.146546

Yanuar A.T., Pramudia Z., Susanti Y.A.D., Kurniawan A. 2024. Analysis of microplastics in spring water. Emerging Contaminants 10: 100277.
Google Scholar DOI: https://doi.org/10.1016/j.emcon.2023.100277

Zhang G.S., Liu Y.F. 2018. The distribution of microplastics in soil aggregate fractions in southwestern China. The Science of the Total Environment 642: 12–20.
Google Scholar DOI: https://doi.org/10.1016/j.scitotenv.2018.06.004

Ziułkiewicz M., Grulke R. 2024. Hydrochemical aspects of water exchange through the bottom of headwater stream in suburban zone on the example of the Malina watercourse in Zgierz (Central Poland). Geology, Geophysics & Environment 50 (3): 231–251.
Google Scholar DOI: https://doi.org/10.7494/geol.2024.50.3.231

Ziułkiewicz M., Fortuniak A., Górowski J., Ajzert M., Kaźmierczak K., Lik K., Mytkowska N., Ślusarczyk T. 2023. Zintegrowana ocena stanu hydrochemicznego doliny rzecznej w obszarze podmiejskim na przykładzie Strugi Dobieszkowskiej (Młynówki) (gm. Stryków). Acta Universitatis Lodziensis. Folia Geographica Physica 22: 19–36.
Google Scholar DOI: https://doi.org/10.18778/1427-9711.22.02

https://klimat.imgw.pl
Google Scholar

https://scalgo.com
Google Scholar

European Union, European Parliament. Directorate General for Communication. Article 20181212STO21610. 25 June 2024.
Google Scholar

European Union, Group of Chief Scientific Advisors. Scientific Opinion 6/2019. (Supported by SAPEA Evidence Review Report No. 4). Brussels, 30 April 2019.
Google Scholar

Downloads

Published

2025-08-26

How to Cite

Serwach, K., & Ziułkiewicz, M. (2025). Bottom sediments of a spring watercourse as a filter for microplastic – on the example of the Młynówka in Stary Imielnik (municipality of Stryków) – preliminary studies. Acta Universitatis Lodziensis. Folia Geographica Physica, (24), 7–16. https://doi.org/10.18778/1427-9711.24.01

Issue

Section

Articles