Tracing the Spatial Patterns of Innovation Determinants in Regional Economic Performance

Authors

DOI:

https://doi.org/10.18778/1508-2008.23.29

Keywords:

regional innovation, patterns of innovation, spatial spillover, common factors, spatial panel econometric model

Abstract

In this paper, we investigate innovation factors and their role in regional economic performance for a sample of 261 EU NUTS 2 regions over the period 2009–2012. In our study, we identify regions with spillover as well as drain effects of innovation factors on economic performance. The spatial analysis indicates that both regional innovativeness and regional development are strongly determined by the region’s location and “neighbourhood”, with severe consequences for Central and Eastern Europe. We assessed the impact of innovation factors and their spatial counterparts on economic performance using a spatial Durbin panel model. The model is designed to test the existence and strength of the country‑effect of innovativeness on the level of regional economic status. This allows for controlling the country‑specific socio‑economic factors, without reducing the number of degrees of freedom. Our model shows that regions benefit economically from their locational spillovers in terms of social capital. However, the decomposition of R&D expenditures revealed competition effect between internal R&D and external technology acquisition, favouring in‑house over outsourced research.

Downloads

Download data is not yet available.

References

Anselin, L. (1998), Spatial Econometrics: Methods and Models, Kluwer, Dordrecht.
Google Scholar

Anselin, L., Le Gallo, J., Jayet, H. (2008), Spatial panel econometrics, [in:] L. Mátyás, P. Sevestre (eds.) The econometrics of panel data, fundamentals and recent developments in theory and practice, 3rd ed., Kluwer, Dordrecht. https://doi.org/10.1007/978-3-540-75892-1_19
Google Scholar DOI: https://doi.org/10.1007/978-3-540-75892-1_19

Anselin, L., Varga, A., Acs, Z. (1997), Local Geographic Spillovers between University Research and High Technology Innovations, “Journal of Urban Economics”, 42 (3), pp. 422–448. https://doi.org/10.1006/juec.1997.2032
Google Scholar DOI: https://doi.org/10.1006/juec.1997.2032

Bilbao-Osorio, B., Rodríguez-Pose, A. (2004), From R&D to Innovation and Economic Growth in the EU, “Growth and Change”, 35 (4), pp. 434–455. https://doi.org/10.1111/j.1468-2257.2004.00256.x
Google Scholar DOI: https://doi.org/10.1111/j.1468-2257.2004.00256.x

Boschma, R. (2005), Proximity and innovation – a critical assessment, “Regional Studies”, 39 (1), pp. 61–74. https://doi.org/10.1080/0034340052000320887
Google Scholar DOI: https://doi.org/10.1080/0034340052000320887

Brouwer, E., Kleinknecht, A. (1999), Innovative output, and a firm’s propensity to patent. An exploration of CIS micro data, “Research Policy”, 28 (6), pp. 615–624. https://doi.org/10.1016/S0048-7333(99)00003-7
Google Scholar DOI: https://doi.org/10.1016/S0048-7333(99)00003-7

Cabrer-Borrás, B., Serran-Domingo, G. (2007), Innovation and R&D spillover effects in Spanish regions: A spatial approach, “Research Policy”, 36, pp. 1357–1371. https://doi.org/10.1016/j.respol.2007.04.012
Google Scholar DOI: https://doi.org/10.1016/j.respol.2007.04.012

Caragliu, A., Nijkamp, P. (2012), The impact of regional absorptive capacity on spatial knowledge spillovers: the Cohen and Levinthal model revisited, “Applied Economics”, 44, pp. 1363–1374. https://doi.org/10.1080/00036846.2010.539549
Google Scholar DOI: https://doi.org/10.1080/00036846.2010.539549

Cliff, A.D., Ord, J.K. (1981), Spatial processes: models and applications, Taylor & Francis, London.
Google Scholar

Corrado, C., Haskel J., Jona-Lasinio, C. (2017), Knowledge Spillovers, ICT and Productivity Growth, “Oxford Bulletin of Economics and Statistics”, 79 (4), pp. 592–618. https://doi.org/10.1111/obes.12171
Google Scholar DOI: https://doi.org/10.1111/obes.12171

Corrado, C., Hulten, Ch., Sichel, D. (2009), Intangible capital and U.S. economic growth, “The Review of Income and Wealth”, 55 (3), pp. 661–685. https://doi.org/10.1111/j.1475-4991.2009.00343.x
Google Scholar DOI: https://doi.org/10.1111/j.1475-4991.2009.00343.x

Crescenzi, R., Rodrígue-Pose, A., Storper, M. (2007), The territorial dynamics of innovation: a Europe – United States comparative analysis, “Journal of Economic Geography”, 7 (6), pp. 673–709. https://doi.org/10.1093/jeg/lbm030
Google Scholar DOI: https://doi.org/10.1093/jeg/lbm030

Dominicis, L. de, Florax, R.J.G.M., Groot, H.L.F. de (2013), Regional clusters of innovative activity in Europe: are social capital and geographical proximity key determinants?, “Applied Economics”, 45 (17), pp. 2325–2335. https://doi.org/10.1080/00036846.2012.663474
Google Scholar DOI: https://doi.org/10.1080/00036846.2012.663474

Educational attainment statistics. http://ec.europa.eu/eurostat/statistics-explained/index.php/Educational_attainment_statistics (accessed: 23.02.2020).
Google Scholar

Elhorst, J.P. (2014), Spatial Panel Models, [in:] M. Fischer, P. Nijkamp (eds.) Handbook of Regional Science, Berlin, Springer. https://doi.org/10.1007/978-3-642-23430-9_86
Google Scholar DOI: https://doi.org/10.1007/978-3-642-23430-9_86

Elhorst, J.P., Gross M., Tereanu E. (2018), Spillovers in space and time: where spatial econometrics and Global VAR models meet, European, Central Bank, Frankfurt, Working Paper Series, No. 2134.
Google Scholar DOI: https://doi.org/10.2139/ssrn.3134525

European Innovation Scoreboard 2016. https://op.europa.eu/en/publication-detail/-/publication/693eaaba-de16-11e6-ad7c-01aa75ed71a1/language-en/format-PDF/source-31233711 (accessed: 23.02.2020).
Google Scholar

Eurostat Regional Database. https://ec.europa.eu/eurostat/web/regions/data/database (accessed: 23.02.2020).
Google Scholar

Frascati Manual (2002). https://www.oecd-ilibrary.org/science-and-technology/frascati-manual-2002_9789264199040-en (accessed: 23.02.2020).
Google Scholar

Global Innovation Index 2016 report. http://www.wipo.int/edocs/pubdocs/en/wipo_pub_gii_2016.pdf (accessed: 23.02.2020).
Google Scholar

Global Innovation Index 2017 report. https://www.globalinnovationindex.org/userfiles/file/reportpdf/gii-full-report-2017.pdf (accessed: 23.02.2020).
Google Scholar

Global Innovation Index 2018 report. https://www.globalinnovationindex.org/userfiles/file/reportpdf/gii_2018-report-new.pdf (accessed: 23.02.2020).
Google Scholar

Global Innovation Index 2019 report. https://www.globalinnovationindex.org/userfiles/file/reportpdf/GII2019-keyfinding-E-Web3.pdf (accessed: 23.02.2020).
Google Scholar

Gonçalves, E., Almaida, E.S. (2009), Innovation and Spatial Knowledge Spillovers: Evidence from Brazilian Patent Data, “Regional Studies”, 43 (4), pp. 513–528. https://doi.org/10.1080/00343400701874131
Google Scholar DOI: https://doi.org/10.1080/00343400701874131

Granovetter, M. (2005), The impact of social structure on economic outcomes, “Journal of Economic Perspectives”, 19 (1), pp. 33–50. https://doi.org/10.1257/0895330053147958
Google Scholar DOI: https://doi.org/10.1257/0895330053147958

Griliches, Z. (1979), Issues in assessing the contribution of research and development to productivity growth, “Bell Journal of Economics”, 10 (1), pp. 92–116. https://doi.org/10.2307/3003321
Google Scholar DOI: https://doi.org/10.2307/3003321

Halleck, V.S., Elhorst J.P. (2016), A regional unemployment model simultaneously accounting for serial dynamics, spatial dependence and common factors, “Regional Science and Urban Economics”, 60, pp. 85–95. https://doi.org/10.1016/j.regsciurbeco.2016.07.002
Google Scholar DOI: https://doi.org/10.1016/j.regsciurbeco.2016.07.002

Jaffe, A.B. (1989), Real effects of academic research, “American Economic Review”, 79 (5), pp. 957–970.
Google Scholar

Kelejian, H.H., Prucha, I.R. (1998), A Generalised Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances, “The Journal of Real Estate Finance and Economics”, 17 (1), pp. 99–121.
Google Scholar DOI: https://doi.org/10.1023/A:1007707430416

Kelejian, H.H., Prucha, I.R. (2010), Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances, “Journal of Econometrics”, 157 (1), pp. 53–67. https://doi.org/10.1016/j.jeconom.2009.10.025
Google Scholar DOI: https://doi.org/10.1016/j.jeconom.2009.10.025

LeSage, J., Pace, R.K. (2009), Introduction to Spatial Econometrics, Taylor & Francis Group, New York. https://doi.org/10.1201/9781420064254
Google Scholar DOI: https://doi.org/10.1201/9781420064254

Moran, P.A.P. (1948), The Interpretation of Statistical Maps, “Journal of the Royal Statistical Society”, Series B (Methodological), 10 (2), pp. 243–251. https://doi.org/10.1111/j.2517-6161.1948.tb00012.x
Google Scholar DOI: https://doi.org/10.1111/j.2517-6161.1948.tb00012.x

Olejnik, J., Olejnik, A. (2020), QML estimation with non summable weight matrices, “Journal of Geographical Systems”, 22, pp. 469–495. https://doi.org/10.1007/s10109-020-00326-2
Google Scholar DOI: https://doi.org/10.1007/s10109-020-00326-2

Ord, K. (1975), Estimation Methods for Models of Spatial Interaction, “Journal of the American Statistical Association”, 70, pp. 120–126. https://doi.org/10.1080/01621459.1975.10480272
Google Scholar DOI: https://doi.org/10.1080/01621459.1975.10480272

Regional Innovation Scoreboard 2016 report. https://op.europa.eu/en/publication-detail/-/publication/693eaaba-de16-11e6-ad7c-01aa75ed71a1/language-en/format-PDF/source-31233711 (accessed: 23.02.2020).
Google Scholar

Regional Innovation Scoreboard 2017 report. https://op.europa.eu/en/publication-detail/-/publication/ce38bc9d-5562-11e7-a5ca-01aa75ed71a1/language-en/format-PDF/source-99532255 (accessed: 23.02.2020).
Google Scholar

Regional Innovation Scoreboard 2019 report. https://ec.europa.eu/growth/sites/growth/files/ris2019.pdf (accessed: 23.02.2020)
Google Scholar

Shi, W., Lee, L.F. (2017), Spatial dynamic panel data model with interactive fixed effects, “Journal of Econometrics”, 197, pp. 323–347. https://doi.org/10.1016/j.jeconom.2016.12.001
Google Scholar DOI: https://doi.org/10.1016/j.jeconom.2016.12.001

Downloads

Published

2020-12-30

How to Cite

Olejnik, A., & Żółtaszek, A. (2020). Tracing the Spatial Patterns of Innovation Determinants in Regional Economic Performance. Comparative Economic Research. Central and Eastern Europe, 23(4), 87–108. https://doi.org/10.18778/1508-2008.23.29

Issue

Section

Articles