Tracing the Spatial Patterns of Innovation Determinants in Regional Economic Performance
DOI:
https://doi.org/10.18778/1508-2008.23.29Keywords:
regional innovation, patterns of innovation, spatial spillover, common factors, spatial panel econometric modelAbstract
In this paper, we investigate innovation factors and their role in regional economic performance for a sample of 261 EU NUTS 2 regions over the period 2009–2012. In our study, we identify regions with spillover as well as drain effects of innovation factors on economic performance. The spatial analysis indicates that both regional innovativeness and regional development are strongly determined by the region’s location and “neighbourhood”, with severe consequences for Central and Eastern Europe. We assessed the impact of innovation factors and their spatial counterparts on economic performance using a spatial Durbin panel model. The model is designed to test the existence and strength of the country‑effect of innovativeness on the level of regional economic status. This allows for controlling the country‑specific socio‑economic factors, without reducing the number of degrees of freedom. Our model shows that regions benefit economically from their locational spillovers in terms of social capital. However, the decomposition of R&D expenditures revealed competition effect between internal R&D and external technology acquisition, favouring in‑house over outsourced research.
Downloads
References
Anselin, L. (1998), Spatial Econometrics: Methods and Models, Kluwer, Dordrecht.
Google Scholar
Anselin, L., Le Gallo, J., Jayet, H. (2008), Spatial panel econometrics, [in:] L. Mátyás, P. Sevestre (eds.) The econometrics of panel data, fundamentals and recent developments in theory and practice, 3rd ed., Kluwer, Dordrecht. https://doi.org/10.1007/978-3-540-75892-1_19
Google Scholar
DOI: https://doi.org/10.1007/978-3-540-75892-1_19
Anselin, L., Varga, A., Acs, Z. (1997), Local Geographic Spillovers between University Research and High Technology Innovations, “Journal of Urban Economics”, 42 (3), pp. 422–448. https://doi.org/10.1006/juec.1997.2032
Google Scholar
DOI: https://doi.org/10.1006/juec.1997.2032
Bilbao-Osorio, B., Rodríguez-Pose, A. (2004), From R&D to Innovation and Economic Growth in the EU, “Growth and Change”, 35 (4), pp. 434–455. https://doi.org/10.1111/j.1468-2257.2004.00256.x
Google Scholar
DOI: https://doi.org/10.1111/j.1468-2257.2004.00256.x
Boschma, R. (2005), Proximity and innovation – a critical assessment, “Regional Studies”, 39 (1), pp. 61–74. https://doi.org/10.1080/0034340052000320887
Google Scholar
DOI: https://doi.org/10.1080/0034340052000320887
Brouwer, E., Kleinknecht, A. (1999), Innovative output, and a firm’s propensity to patent. An exploration of CIS micro data, “Research Policy”, 28 (6), pp. 615–624. https://doi.org/10.1016/S0048-7333(99)00003-7
Google Scholar
DOI: https://doi.org/10.1016/S0048-7333(99)00003-7
Cabrer-Borrás, B., Serran-Domingo, G. (2007), Innovation and R&D spillover effects in Spanish regions: A spatial approach, “Research Policy”, 36, pp. 1357–1371. https://doi.org/10.1016/j.respol.2007.04.012
Google Scholar
DOI: https://doi.org/10.1016/j.respol.2007.04.012
Caragliu, A., Nijkamp, P. (2012), The impact of regional absorptive capacity on spatial knowledge spillovers: the Cohen and Levinthal model revisited, “Applied Economics”, 44, pp. 1363–1374. https://doi.org/10.1080/00036846.2010.539549
Google Scholar
DOI: https://doi.org/10.1080/00036846.2010.539549
Cliff, A.D., Ord, J.K. (1981), Spatial processes: models and applications, Taylor & Francis, London.
Google Scholar
Corrado, C., Haskel J., Jona-Lasinio, C. (2017), Knowledge Spillovers, ICT and Productivity Growth, “Oxford Bulletin of Economics and Statistics”, 79 (4), pp. 592–618. https://doi.org/10.1111/obes.12171
Google Scholar
DOI: https://doi.org/10.1111/obes.12171
Corrado, C., Hulten, Ch., Sichel, D. (2009), Intangible capital and U.S. economic growth, “The Review of Income and Wealth”, 55 (3), pp. 661–685. https://doi.org/10.1111/j.1475-4991.2009.00343.x
Google Scholar
DOI: https://doi.org/10.1111/j.1475-4991.2009.00343.x
Crescenzi, R., Rodrígue-Pose, A., Storper, M. (2007), The territorial dynamics of innovation: a Europe – United States comparative analysis, “Journal of Economic Geography”, 7 (6), pp. 673–709. https://doi.org/10.1093/jeg/lbm030
Google Scholar
DOI: https://doi.org/10.1093/jeg/lbm030
Dominicis, L. de, Florax, R.J.G.M., Groot, H.L.F. de (2013), Regional clusters of innovative activity in Europe: are social capital and geographical proximity key determinants?, “Applied Economics”, 45 (17), pp. 2325–2335. https://doi.org/10.1080/00036846.2012.663474
Google Scholar
DOI: https://doi.org/10.1080/00036846.2012.663474
Educational attainment statistics. http://ec.europa.eu/eurostat/statistics-explained/index.php/Educational_attainment_statistics (accessed: 23.02.2020).
Google Scholar
Elhorst, J.P. (2014), Spatial Panel Models, [in:] M. Fischer, P. Nijkamp (eds.) Handbook of Regional Science, Berlin, Springer. https://doi.org/10.1007/978-3-642-23430-9_86
Google Scholar
DOI: https://doi.org/10.1007/978-3-642-23430-9_86
Elhorst, J.P., Gross M., Tereanu E. (2018), Spillovers in space and time: where spatial econometrics and Global VAR models meet, European, Central Bank, Frankfurt, Working Paper Series, No. 2134.
Google Scholar
DOI: https://doi.org/10.2139/ssrn.3134525
European Innovation Scoreboard 2016. https://op.europa.eu/en/publication-detail/-/publication/693eaaba-de16-11e6-ad7c-01aa75ed71a1/language-en/format-PDF/source-31233711 (accessed: 23.02.2020).
Google Scholar
Eurostat Regional Database. https://ec.europa.eu/eurostat/web/regions/data/database (accessed: 23.02.2020).
Google Scholar
Frascati Manual (2002). https://www.oecd-ilibrary.org/science-and-technology/frascati-manual-2002_9789264199040-en (accessed: 23.02.2020).
Google Scholar
Global Innovation Index 2016 report. http://www.wipo.int/edocs/pubdocs/en/wipo_pub_gii_2016.pdf (accessed: 23.02.2020).
Google Scholar
Global Innovation Index 2017 report. https://www.globalinnovationindex.org/userfiles/file/reportpdf/gii-full-report-2017.pdf (accessed: 23.02.2020).
Google Scholar
Global Innovation Index 2018 report. https://www.globalinnovationindex.org/userfiles/file/reportpdf/gii_2018-report-new.pdf (accessed: 23.02.2020).
Google Scholar
Global Innovation Index 2019 report. https://www.globalinnovationindex.org/userfiles/file/reportpdf/GII2019-keyfinding-E-Web3.pdf (accessed: 23.02.2020).
Google Scholar
Gonçalves, E., Almaida, E.S. (2009), Innovation and Spatial Knowledge Spillovers: Evidence from Brazilian Patent Data, “Regional Studies”, 43 (4), pp. 513–528. https://doi.org/10.1080/00343400701874131
Google Scholar
DOI: https://doi.org/10.1080/00343400701874131
Granovetter, M. (2005), The impact of social structure on economic outcomes, “Journal of Economic Perspectives”, 19 (1), pp. 33–50. https://doi.org/10.1257/0895330053147958
Google Scholar
DOI: https://doi.org/10.1257/0895330053147958
Griliches, Z. (1979), Issues in assessing the contribution of research and development to productivity growth, “Bell Journal of Economics”, 10 (1), pp. 92–116. https://doi.org/10.2307/3003321
Google Scholar
DOI: https://doi.org/10.2307/3003321
Halleck, V.S., Elhorst J.P. (2016), A regional unemployment model simultaneously accounting for serial dynamics, spatial dependence and common factors, “Regional Science and Urban Economics”, 60, pp. 85–95. https://doi.org/10.1016/j.regsciurbeco.2016.07.002
Google Scholar
DOI: https://doi.org/10.1016/j.regsciurbeco.2016.07.002
Jaffe, A.B. (1989), Real effects of academic research, “American Economic Review”, 79 (5), pp. 957–970.
Google Scholar
Kelejian, H.H., Prucha, I.R. (1998), A Generalised Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances, “The Journal of Real Estate Finance and Economics”, 17 (1), pp. 99–121.
Google Scholar
DOI: https://doi.org/10.1023/A:1007707430416
Kelejian, H.H., Prucha, I.R. (2010), Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances, “Journal of Econometrics”, 157 (1), pp. 53–67. https://doi.org/10.1016/j.jeconom.2009.10.025
Google Scholar
DOI: https://doi.org/10.1016/j.jeconom.2009.10.025
LeSage, J., Pace, R.K. (2009), Introduction to Spatial Econometrics, Taylor & Francis Group, New York. https://doi.org/10.1201/9781420064254
Google Scholar
DOI: https://doi.org/10.1201/9781420064254
Moran, P.A.P. (1948), The Interpretation of Statistical Maps, “Journal of the Royal Statistical Society”, Series B (Methodological), 10 (2), pp. 243–251. https://doi.org/10.1111/j.2517-6161.1948.tb00012.x
Google Scholar
DOI: https://doi.org/10.1111/j.2517-6161.1948.tb00012.x
Olejnik, J., Olejnik, A. (2020), QML estimation with non summable weight matrices, “Journal of Geographical Systems”, 22, pp. 469–495. https://doi.org/10.1007/s10109-020-00326-2
Google Scholar
DOI: https://doi.org/10.1007/s10109-020-00326-2
Ord, K. (1975), Estimation Methods for Models of Spatial Interaction, “Journal of the American Statistical Association”, 70, pp. 120–126. https://doi.org/10.1080/01621459.1975.10480272
Google Scholar
DOI: https://doi.org/10.1080/01621459.1975.10480272
Regional Innovation Scoreboard 2016 report. https://op.europa.eu/en/publication-detail/-/publication/693eaaba-de16-11e6-ad7c-01aa75ed71a1/language-en/format-PDF/source-31233711 (accessed: 23.02.2020).
Google Scholar
Regional Innovation Scoreboard 2017 report. https://op.europa.eu/en/publication-detail/-/publication/ce38bc9d-5562-11e7-a5ca-01aa75ed71a1/language-en/format-PDF/source-99532255 (accessed: 23.02.2020).
Google Scholar
Regional Innovation Scoreboard 2019 report. https://ec.europa.eu/growth/sites/growth/files/ris2019.pdf (accessed: 23.02.2020)
Google Scholar
Shi, W., Lee, L.F. (2017), Spatial dynamic panel data model with interactive fixed effects, “Journal of Econometrics”, 197, pp. 323–347. https://doi.org/10.1016/j.jeconom.2016.12.001
Google Scholar
DOI: https://doi.org/10.1016/j.jeconom.2016.12.001
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.