Oczekiwania inflacyjne konsumentów i profesjonalistów – własności i wzajemne zależności
DOI:
https://doi.org/10.18778/1508-2008.27.23Słowa kluczowe:
oczekiwania inflacyjne, wzajemna informacja, algorytm DTWAbstrakt
Oczekiwania inflacyjne są kluczową zmienną dla banków centralnych. Jednak empiryczne badanie ich właściwości stanowi wyzwanie. Celem tego badania jest porównanie właściwości oczekiwań konsumentów i profesjonalistów oraz ocena nastawienia na przyszłość i informacji zawartej w oczekiwaniach tych grup uczestników rynku. W badaniu zastosowano miary oparte na entropii, aby uchwycić nieliniowe zależności między zmiennymi i algorytm dynamicznej transformaty czasowej (DTW) oraz uwzględnić różne opóźnienia w relacjach. Badanie obejmuje 12 gospodarek regionu europejskiego, w których realizowana jest strategia celu inflacyjnego. Wyniki sugerują, że w większości krajów profesjonaliści bardziej wybiegają w przyszłość, a konsumenci podążają za profesjonalistami. Obie grupy podmiotów gospodarczych prezentują oczekiwania zgodne pod względem zawartości informacyjnej. Występują różnice między krajami. Wyniki badań potwierdzają, że komunikacja i inne działania banków centralnych, nakierowane na kształtowanie oczekiwań, nawet jeśli skierowane są głównie do specjalistów, nie pozostają bez znaczenia dla konsumentów. Wartość dodana badania wynika z zastosowania alternatywnej metody oceny oczekiwań, pozwalającej na uniknięcie wad metod standardowych oraz na wyciągnięcie szerszych wniosków na temat zależności.
Pobrania
Bibliografia
Abildgren, K., Kuchler, A. (2021), Revisiting the inflation perception conundrum, “Journal of Macroeconomics”, 67, 103264, https://doi.org/10.1016/j.jmacro.2020.103264
Google Scholar
DOI: https://doi.org/10.1016/j.jmacro.2020.103264
Batchelor, R.A., Orr, A.B. (1988), Inflation Expectations Revisited, “Economica”, 55 (219), pp. 317–331, https://doi.org/10.2307/2554010
Google Scholar
DOI: https://doi.org/10.2307/2554010
Będowska-Sójka, B., Kliber, A., Rutkowska, A. (2021), Is Bitcoin Still a King? Relationships between Prices, Volatility and Liquidity of Cryptocurrencies during the Pandemic, “Entropy”, 23 (11), 1386, https://doi.org/10.3390/e23111386
Google Scholar
DOI: https://doi.org/10.3390/e23111386
Binder, C. (2015), Whose expectations augment the phillips Phillips curve?, “Economics Letters”, 136, pp. 35–38, https://doi.org/10.1016/j.econlet.2015.08.013
Google Scholar
DOI: https://doi.org/10.1016/j.econlet.2015.08.013
Carlson, J.A., Parkin, M. (1975), Inflation Expectations, “Economica”, 42 (166), pp. 123–138, https://doi.org/10.2307/2553588
Google Scholar
DOI: https://doi.org/10.2307/2553588
Carroll, C.D. (2003), Macroeconomic Expectations of Households and Professional Forecasters, “The Quarterly Journal of Economics”, 1 (118), pp. 269–298, https://doi.org/10.1162/00335530360535207
Google Scholar
DOI: https://doi.org/10.1162/00335530360535207
Coibion, O., Gorodnichenko, Y. (2015), Is the Phillips Curve Alive and Well after All? Inflation Expectations and the Missing Disinflation, “American Economic Journal: Macroeconomics”, 7 (1), pp. 197–232, https://doi.org/10.1257/mac.20130306
Google Scholar
DOI: https://doi.org/10.1257/mac.20130306
Coibion, O., Gorodnichenko, Y.R.K. (2018), The Formation of Expectations, Inflation, and the Phillips Curve, “Journal of Economic Literature”, 56 (4), pp. 1447–1491, https://doi.org/10.1257/jel.20171300
Google Scholar
DOI: https://doi.org/10.1257/jel.20171300
D’Acunto, F., Hoang, D., Paloviita, M., Weber, M. (2019), Cognitive Abilities and Inflation Expectations, “AEA Papers and Proceedings”, 109, pp. 562–566, https://doi.org/10.1257/pandp.20191050
Google Scholar
DOI: https://doi.org/10.1257/pandp.20191050
Dionisio, A., Menezes, R., Mendes, D.A. (2004), Mutual information: a measure of dependency for nonlinear time series, “Physica A: Statistical Mechanics and its Applications”, 344 (1–2), pp. 326–329, https://doi.org/10.1016/j.physa.2004.06.144
Google Scholar
DOI: https://doi.org/10.1016/j.physa.2004.06.144
Dobrushin, R. (1963), General formulation of Shannon’s main theorem in information theory, [in:] A.A. Andronov, D.V. Anosov, Ding Shia-shi, R.L. Dobrušin, G.V. Gil’, A.N. Kolmogorov, E.A. Leontovič, A.D. Myškis, O.A. Oleĭnik, S.L. Sobolev, V.M. Staržinskiĭ, Eleven Papers in Analysis: Nine Papers on Differential Equations, Two on Information Theory, “American Mathematical Society Translations”, 33, pp. 323–438, https://doi.org/10.1090/trans2/033/11
Google Scholar
DOI: https://doi.org/10.1090/trans2/033/11
Dovern, J., Fritsche, U., Slacalek, J. (2012), Disagreement Among Forecasters in G7 Countries, “The Review of Economics and Statistics”, 94 (4), pp. 1081–1096, https://doi.org/10.1162/REST_a_00207
Google Scholar
DOI: https://doi.org/10.1162/REST_a_00207
Drager, L. (2015), Inflation perceptions and expectations in Sweden – Are media reports the missing link?, “Oxford Bulletin of Economics and Statistics”, 77 (5), pp. 681–700, https://doi.org/10.1111/obes.12078
Google Scholar
DOI: https://doi.org/10.1111/obes.12078
El Amouri, H., Lampert, T., Gançarski, P., Mallet, C. (2023), Constrained DTW preserving shapelets for explainable time-series clustering, “Pattern Recognition”, 143, 109804, https://doi.org/10.1016/j.patcog.2023.109804
Google Scholar
DOI: https://doi.org/10.1016/j.patcog.2023.109804
European Commission (2016), The Joint Harmonised EU Programme of Business and Consumer Survey. User guide, Brussels.
Google Scholar
Evans, G., Gulamani, R. (1984), Tests for rationality of the Carlson-Parkin inflation expectations data, “Oxford Bulletin of Economics and Statistics”, 46 (1), pp. 1–19, https://doi.org/10.1111/j.1468-0084.1984.mp46001001.x
Google Scholar
DOI: https://doi.org/10.1111/j.1468-0084.1984.mp46001001.x
Ferreira, J., Morais, F. (2023), Predict or to be predicted? A transfer entropy view between adaptive green markets, structural shocks and sentiment index, “Finance Research Letters”, 56, 104100, https://doi.org/10.1016/j.frl.2023.104100
Google Scholar
DOI: https://doi.org/10.1016/j.frl.2023.104100
Franses, P.H., Wiemann, T. (2020), Intertemporal Similarity of Economic Time Series: An Application of Dynamic Time Warping, “Computational Economics”, 56, pp. 59–75, https://doi.org/10.1007/s10614-020-09986-0
Google Scholar
DOI: https://doi.org/10.1007/s10614-020-09986-0
Gerberding, C. (2001), The Information Content of Survey Data on Expected Price Developments for Monetary Policy, “Economic Research Centre of the Deutsche Bundesbank”, 9, pp. 30–52, https://doi.org/10.2139/ssrn.2785125
Google Scholar
DOI: https://doi.org/10.2139/ssrn.2785125
Hahn, J., Hausman, J., Kuersteiner, G. (2004), Estimation with weak instruments: Accuracy of higher-order bias and MSE approximations, “The Econometrics Journal”, 7 (1), pp. 272–306, https://doi.org/10.1111/j.1368-423X.2004.00131.x
Google Scholar
DOI: https://doi.org/10.1111/j.1368-423X.2004.00131.x
Han, T., Peng, Q., Zhu, Z., Shen, Y., Huang, H., Abid, N.N. (2020), A pattern representation of stock time series based on DTW, “Physica A: Statistical Mechanics and its Applications”, 550, 124161, https://doi.org/10.1016/j.physa.2020.124161
Google Scholar
DOI: https://doi.org/10.1016/j.physa.2020.124161
Lahmiri, S., Bekiros, S. (2020), Renyi entropy and mutual information measurement of market expectations and investor fear during the COVID–19 pandemic, “Chaos, Solitons & Fractals”, 139, https://doi.org/10.1016/j.chaos.2020.110084
Google Scholar
DOI: https://doi.org/10.1016/j.chaos.2020.110084
Lucas Jr., R.E. (1972), Expectations and the neutrality of money, “Journal of Economic Theory”, 4 (2), pp. 103–124, https://doi.org/10.1016/0022-0531(72)90142-1
Google Scholar
DOI: https://doi.org/10.1016/0022-0531(72)90142-1
Lucas Jr., R.E. (1976), Econometric policy evaluation: A critique, “Carnegie-Rochester Conference Series on Public Policy”, 1, pp. 19–46.
Google Scholar
DOI: https://doi.org/10.1016/S0167-2231(76)80003-6
Łyziak, T. (2013), Formation of Inflation Expectations by Different Economic Agents, “Eastern European Economics”, 51 (6), pp. 5–33, https://doi.org/10.2753/EEE0012-8775510601
Google Scholar
DOI: https://doi.org/10.2753/EEE0012-8775510601
Łyziak, T., Mackiewicz-Łyziak, J. (2014), Do Consumers in Europe Anticipate Future Inflation?, “Eastern European Economics”, 52 (3), pp. 5–32, https://doi.org/10.2753/EEE0012-8775520301
Google Scholar
DOI: https://doi.org/10.2753/EEE0012-8775520301
Łyziak, T., Sheng, X.S. (2023), Disagreement in Consumer Inflation Expectation, “Journal of Money, Credit and Banking”, 55 (8), pp. 2215–2241, https://doi.org/10.1111/jmcb.12981
Google Scholar
DOI: https://doi.org/10.1111/jmcb.12981
Martens, E.P., Pestman, W.R., Boer, A. de, Belitser, S.V., Klungel, O.H. (2006), Instrumental Variables: Application and Limitations, “Epidemiology”, 17 (3), pp. 260–267, https://doi.org/10.1097/01.ede.0000215160.88317.cb
Google Scholar
DOI: https://doi.org/10.1097/01.ede.0000215160.88317.cb
Muth, J.F. (1961), Rational Expectations and the Theory of Price Movements, “Econometrica: Journal of the Econometric Society”, 29 (3), pp. 315–335, https://doi.org/10.2307/1909635
Google Scholar
DOI: https://doi.org/10.2307/1909635
Raihan, T. (2017), Predicting US Recessions: A Dynamic Time Warping Exercise in Economics, “SSRN Electronic Journal”, https://doi.org/10.2139/ssrn.3047649
Google Scholar
DOI: https://doi.org/10.2139/ssrn.3047649
Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., Zakaria, J., Keogh, E. (2012), Searching and mining trillions of time series subsequences under dynamic time warping, [in:] Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing China August 12–16, 2012, pp. 262–270, https://dl.acm.org/doi/10.1145/2339530.2339576
Google Scholar
DOI: https://doi.org/10.1145/2339530.2339576
Rutkowska, A., Szyszko, M. (2022), New DTW Windows Type for Forward- and Backward-Lookingness Examination. Application for Inflation Expectation, “Computational Economics”, 59 (2), pp. 701–718, https://doi.org/10.1007/s10614-021-10103-y
Google Scholar
DOI: https://doi.org/10.1007/s10614-021-10103-y
Staiger, D., Stock, J.H. (1994), Instrumental variables regression with weak instruments, “Technical Working Paper”, 151, National Bureau of Economic Research, Cambridge, https://doi.org/10.3386/t0151
Google Scholar
DOI: https://doi.org/10.3386/t0151
Stock, J.H., Wright, J.H. (2000), GMM with Weak Identification, “Econometrica”, 68 (5), pp. 1055–1096, https://doi.org/10.1111/1468-0262.00151
Google Scholar
DOI: https://doi.org/10.1111/1468-0262.00151
Wyner, A.D. (1978), A definition of conditional mutual information for arbitrary ensembles, “Information and Control”, 38 (1), pp. 51–59, https://doi.org/10.1016/S0019-9958(78)90026-8
Google Scholar
DOI: https://doi.org/10.1016/S0019-9958(78)90026-8
Zhao, Y. (2022), Internal consistency of household inflation expectations: Point forecasts vs. density forecasts, “International Journal of Forecasting”, 39 (4), pp. 1713–1735, https://doi.org/10.1016/j.ijforecast.2022.08.008
Google Scholar
DOI: https://doi.org/10.1016/j.ijforecast.2022.08.008
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.
Funding data
-
Narodowym Centrum Nauki
Grant numbers 2020/37/B/HS4/02611