Comparison of Data Collection Methods for Microscopic Traffic Simulation in VISSIM: A Case Study of Spatial Planning in the Złotno District of Łódź
DOI:
https://doi.org/10.18778/2543-9421.10.01Keywords:
transport, VISSIM, simulation, spatial planning, floating car data, FCDAbstract
This paper presents a case study on a comparison of data collection methods for the calibration and validation of a microsimulation traffic model in PTV VISSIM software, based on the example of a section of the street network of Złotno in Łódź. The aim of the study was to assess the practical usability and reliability of two data sources: limited field measurements and commercial floating car data (FCD) provided by TomTom MOVE, in the context of traffic modelling for urban planning. Two parallel VISSIM models were built and calibrated, each based on one of the analysed data sources. The GEH-statistic, scalable quality value (SQV), root mean square error (RMSE) and correlation coefficient (CC) indices were used to assess the quality of the fit. The analysis showed that although both approaches can lead to acceptable calibration results, their characteristics and limitations imply the need for an informed choice of data collection method, adapted to the specifics of the area under analysis, the scale of the project and the spatial planning objectives.
References
Abdeen, M.A.R., Farrag, S., Benaida, M., Sheltami, T., El-Hansali, Y. (2023). VISSIM calibration and validation of urban traffic: A case study Al-Madinah City. Personal and Ubiquitous Computing, 27(5), 1747–1756. https://doi.org/10.1007/s00779-023-01738-9
Google Scholar
DOI: https://doi.org/10.1007/s00779-023-01738-9
Al-Msari, H., Koting, S., Ahmed, A.N., El-shafie, A. (2024). Review of driving-behaviour simulation: VISSIM and artificial intelligence approach. Heliyon, 10(4), artykuł e25936. https://doi.org/10.1016/j.heliyon.2024.e25936
Google Scholar
DOI: https://doi.org/10.1016/j.heliyon.2024.e25936
Auberlet, J.-M., Bhaskar, A., Ciuffo, B., Farah, H., Hoogendoorn, R., Leonhardt, A. (2014). Data collection techniques. W: W. Daamen, C. Buisson i S.P. Hoogendoorn (red.), Traffic simulation and data: Validation methods and applications (s. 5–32). CRC Press; Taylor & Francis Group.
Google Scholar
DOI: https://doi.org/10.1201/b17440-3
Bandi, M.M., George, V. (2020). Calibration of vehicle and driver characteristics in VISSIM and ANN-based sensitivity analysis. International Journal of Microsimulation, 13(2), 79–101. https://doi.org/10.34196/ijm.00219
Google Scholar
DOI: https://doi.org/10.34196/IJM.00219
Ciesielski, M. (1986). Zeszyty Naukowe Akademii Ekonomicznej w Poznaniu. Seria II Prace Doktorskie i Habilitacyjne. Z. 87: Koszty kongestii transportowej w miastach. Wydawnictwo Akademii Ekonomicznej w Poznaniu. https://www.wbc.poznan.pl/Content/82842/PDF/Ciesielski%20Marek%20-%20Koszty%20kongestii%20transportowej%20w%20miastach.pdf
Google Scholar
Davis, R., Duany, A., Plater-Zyberk, E. (2002). The lexicon of the new urbanism. Duany Plater-Zyberk & Co.
Google Scholar
Del Serrone, G., Cantisani, G., Peluso, P. (2023). Blending of floating car data and point-based sensor data to deduce operating speeds under different traffic flow conditions. European Transport / Transporti Europei, 91, artykuł 5. https://doi.org/10.48295/ET.2023.91.5
Google Scholar
DOI: https://doi.org/10.48295/ET.2023.91.5
Domińczak, M. (2020). Nowa Urbanistyka: Metodyka i zasady projektowania według SmartCode. Wydawnictwo Politechniki Łódzkiej. https://doi.org/10.34658/9788366287655
Google Scholar
Dybicz, T. (2009). Modelowanie i symulacje ruchu, rys historyczny i aktualnie stosowane oprogramowanie. Zeszyty Naukowo-Techniczne Stowarzyszenia Inżynierów i Techników Komunikacji Rzeczpospolitej Polskiej. Oddział w Krakowie. Seria: Materiały Konferencyjne / Research and Technical Papers of Polish Association and Transportation Engineers in Cracow: Series: Proceedings, (148), 57–73.
Google Scholar
El Esawey, M., Sayed, T. (2011). Calibration and validation of micro-simulation models of medium-size networks. Advances in Transportation Studies: An International Journal: Section B, 24, 57–76. https://www.atsinternationaljournal.com/2011-issues/calibration-and-validation-of-micro-simulation-models-of-medium-size-networks/
Google Scholar
Fellendorf, M., Vortisch, P. (2011). Microscopic traffic flow simulator VISSIM. W: J. Barceló (red.), Fundamentals of traffic simulation (s. 63–93). Springer. https://doi.org/10.1007/978-1-4419-6142-6_2
Google Scholar
DOI: https://doi.org/10.1007/978-1-4419-6142-6_2
Florida Department of Transportation. (2014, marzec). Traffic analysis handbook: A reference for planning and operations. https://fdotwww.blob.core.windows.net/sitefinity/docs/default-source/planning/systems/systems-management/sm-old-files/traffic-analysis/traffic-analysis-handbook_march-2014.pdf?sfvrsn=51c88e22_0
Google Scholar
Friedrich, M., Pestel, E., Schiller, C., Simon, R. (2019). Scalable GEH: A quality measure for comparing observed and modeled single values in a travel demand model validation. Transportation Research Record: Journal of the Transportation Research Board, 2673(4), 722–732. https://doi.org/10.1177/0361198119838849
Google Scholar
DOI: https://doi.org/10.1177/0361198119838849
Gaca, S., Suchorzewski, W., Tracz, M. (2014). Inżynieria ruchu drogowego. Teoria i praktyka. Wydawnictwa Komunikacji i Łączności.
Google Scholar
Gitahi, J., Hahn, M., Storz, M., Bernhard, C., Feldges, M., Nordentoft, R. (2020). Multi-sensor traffic data fusion for congestion detection and tracking. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B1-2020, 173–180. https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-173-2020
Google Scholar
DOI: https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-173-2020
Hafram, S., Valery, S., Hasim, A. (2023). Calibrating and validation microscopic traffic simulation models VISSIM for enhanced highway capacity planning. International Journal of Engineering: Transactions B: Applications, 36(8), 1509–1519. https://doi.org/10.5829/ije.2023.36.08b.11
Google Scholar
DOI: https://doi.org/10.5829/IJE.2023.36.08B.11
Hellinga, B.R. (1998). Requirements for the calibration of traffic simulation models [wystąpienie konferencyjne, Canadian Society for Civil Engineering 1998 Annual Conference, Halifax, Nowa Szkocja]. University of Waterloo – Dr. Bruce Hellinga [publikacje autora]. https://www.civil.uwaterloo.ca/bhellinga/publications/Publications/CSCE-1998-Calibration.PDF
Google Scholar
Hidas, P., Wagner, P. (2004). Review of data collection methods for microscopic traffic simulation [wystąpienie konferencyjne, 10th World Conference on Transport Research, Stambuł]. WCTRS. https://www.wctrs-society.com/wp-content/uploads/abstracts/istanbul/125.pdf
Google Scholar
Ishaque, M.M., Noland, R.B. (2009). Pedestrian and vehicle flow calibration in multimodal traffic microsimulation. Journal of Transportation Engineering, 135(6), 338–348. https://doi.org/10.1061/(ASCE)0733-947X(2009)135:6(338)
Google Scholar
DOI: https://doi.org/10.1061/(ASCE)0733-947X(2009)135:6(338)
Jamroz, K., Budziszewski, T., Kustra, W., Birr, K., Romanowska, A., Maciasz,K., Zawisza, M.(2012, 4września).Transportowy model symulacyjny miasta Gdańska [prezentacja PowerPoint]. Portal Miasta Gdańska. https://www.gdansk.pl/urzad-miejski/wiadomosci/powstal-transportowy-model-symulacyjny-miasta-gdanska,a,26094
Google Scholar
Karimi, M., Miriestahbanati, M., Esmaeeli, H., Alecsandru, C. (2019). Multi-objective stochastic optimization algorithms to calibrate microsimulation models. Transportation Research Record: Journal of the Transportation Research Board, 2673(4), 743–752. https://doi.org/10.1177/0361198119838260
Google Scholar
DOI: https://doi.org/10.1177/0361198119838260
Klos, M.J., Sobota, A. (2019). Performance evaluation of roundabouts using a microscopic simulation model. Scientific Journal of Silesian University of Technology. Series Transport / Zeszyty Naukowe Politechniki Śląskiej. Seria Transport, 104, 57–67. https://doi.org/10.20858/sjsutst.2019.104.6
Google Scholar
DOI: https://doi.org/10.20858/sjsutst.2019.104.6
Kowalski, M., Wiśniewski, S. (2017). Natężenie ruchu a zagospodarowanie Łodzi – zarys problematyki w świetle danych z Obszarowego Systemu Sterowania Ruchem. Prace Komisji Geografii Komunikacji PTG, 20(4), 20–36. https://doi.org/10.4467/2543859XPKG.17.022.8028
Google Scholar
DOI: https://doi.org/10.4467/2543859XPKG.17.022.8028
Kucharski, R. (2009). Metoda detekcji cellular floating data – możliwości i perspektywy. Zeszyty Naukowo-Techniczne Stowarzyszenia Inżynierów i Techników Komunikacji Rzeczpospolitej Polskiej. Oddział w Krakowie. Seria: Materiały Konferencyjne / Research and Technical Papers of Polish Association and Transportation Engineers in Cracow: Series: Proceedings, (148), 143–153.
Google Scholar
Lownes, N.E., Machemehl, R.B. (2006). VISSIM: A multi-parameter sensitivity analysis. W: L.F. Perrone, B.G. Lawson, J. Liu i F.P. Wieland (red.), Proceedings of the 2006 Winter Simulation Conference (s. 1406–1413). IEEE. https://doi.org/10.1109/WSC.2006.323241
Google Scholar
DOI: https://doi.org/10.1109/WSC.2006.323241
Manjunatha, P., Vortisch, P., Mathew, T.V. (2013, styczeń). Methodology for the calibration of VISSIM in mixed traffic. ResearchGate. https://www.researchgate.net/publication/281290567_Methodology_for_the_Calibration_of_VISSIM_in_Mixed_Traffic
Google Scholar
Mężyk, A., Zamkowska, S. (2019). Problemy transportowe miast. Stan i kierunki rozwiązań. Wydawnictwo Naukowe PWN.
Google Scholar
Miejska Pracownia Urbanistyczna w Łodzi. (2018). Studium uwarunkowań i kierunków zagospodarowania przestrzennego miasta Łodzi – 2018. https://mpu.lodz.pl/opracowania/studium/
Google Scholar
Mohan, R., Eldhose, S., Manoharan, G. (2021). Network-level heterogeneous traffic flow modelling in VISSIM. Transportation in Developing Economies, 7(1), artykuł 8. https://doi.org/10.1007/s40890-021-00117-4
Google Scholar
DOI: https://doi.org/10.1007/s40890-021-00117-4
Mosseri, G.M.S., Hall, M.A., Rivera, J.M. (2004). Lincoln tunnel corridor study: Traffic micro-simulation [abstrakt wystąpienia konferencyjnego, ITE 2004 Annual Meeting and Exhibit, Lake Buena Vista]. The National Academies of Sciences, Engineering, and Medicine – Transportation Research Board. https://trid.trb.org/View/744406
Google Scholar
Otković, I.I., Deluka-Tibljaš, A., Šurdonja, S. (2020). Validation of the calibration methodology of the micro-simulation traffic model. Transportation Research Procedia, 45, 684–691. https://doi.org/10.1016/j.trpro.2020.02.110
Google Scholar
DOI: https://doi.org/10.1016/j.trpro.2020.02.110
Otković,I.I.,Tollazzi,T.,Šraml,M.(2013).Calibration of microsimulation traffic model using neural network approach. Expert Systems with Applications, 40(15), 5965–5974. https://doi.org/10.1016/j.eswa.2013.05.003
Google Scholar
DOI: https://doi.org/10.1016/j.eswa.2013.05.003
Park, B.(B.)., Qi, H.(M.). (2005). Development and evaluation of a procedure for the calibration of simulation models. Transportation Research Record: Journal of the Transportation Research Board, 1934(1), 208–217. https://doi.org/10.1177/0361198105193400122
Google Scholar
DOI: https://doi.org/10.1177/0361198105193400122
Park, B.(B.)., Schneeberger, J.D. (2003). Microscopic simulation model calibration and validation: Case study of VISSIM simulation model for a coordinated actuated signal system. Transportation Research Record: Journal of the Transportation Research Board, 1856(1), 185–192. https://doi.org/10.3141/1856-20
Google Scholar
DOI: https://doi.org/10.3141/1856-20
Park, B.(B.)., Won, J. (2006a). Application of microscopic simulation model calibration and validation procedure: Case study of coordinated actuated signal system. Transportation Research Record: Journal of the Transportation Research Board, 1978(1), 113–122. https://doi.org/10.1177/0361198106197800115
Google Scholar
DOI: https://doi.org/10.1177/0361198106197800115
Park, B.(B.)., Won, J. (2006b). Microscopic simulation model calibration and validation handbook. Virginia Transportation Research Council. https://rosap.ntl.bts.gov/view/dot/19808
Google Scholar
Rahman, M.H., Abdel-Aty, M., Lee, J., Rahman, M.S. (2019). Enhancing traffic safety at school zones by operation and engineering countermeasures: A microscopic simulation approach. Simulation Modelling Practice and Theory, 94, 334–348. https://doi.org/10.1016/j.simpat.2019.04.001
Google Scholar
DOI: https://doi.org/10.1016/j.simpat.2019.04.001
Rrecaj, A.A., Bombol, K.M. (2015). Calibration and validation of the VISSIM parameters: State of the art. TEM Journal, 4(3), 255–269. https://www.temjournal.com/content/43/05/TemJournalAugust2015_255_269.pdf
Google Scholar
DOI: https://doi.org/10.18421/TEM43-05
Siwek, K. (2024, 26 listopada). Marathon on Maratońska Street: Simulating future traffic in Lodz. PTV Group. https://blog.ptvgroup.com/en/modeling-planning/marathon-onmaratonska-street-simulating-future-traffic-in-lodz/
Google Scholar
So, J., Ostojic, M., Jolovic, D., Stevanovic, A. (2016, styczeń). Building, calibrating, and validating a large-scale high-fiidelity microscopic traffic simulation model: A manual approach. ResearchGate. https://www.researchgate.net/publication/303911902_Building_Calibrating_and_Validating_A_Large-Scale_High-Fidelity_Microscopic_Traffic_Simulation_Model_-_A_Manual_Approach
Google Scholar
Sokołowicz, M.E. (2013). Wokół koncepcji zrównoważonego transportu. Ślepe tory polemik. Kronika Miasta Łodzi, 62(2), 17–24. https://bc.wbp.lodz.pl/dlibra/publication/110518/edition/105663/content
Google Scholar
Sroczyński, A. (2023). Adaptacyjny system sterowania ruchem drogowym [rozprawa doktorska, Politechnika Gdańska]. Most Wiedzy. https://mostwiedzy.pl/pl/publication/adaptacyjny-system-sterowania-ruchem-drogowym,163123-1
Google Scholar
Stevanovic, J., Stevanovic, A., Martin, P., Bauer, T. (2008). Stochastic optimization of traffic control and transit priority settings in VISSIM. Transportation Research Part C: Emerging Technologies, 16(3), 332–349. https://doi.org/10.1016/j.trc.2008.01.002
Google Scholar
DOI: https://doi.org/10.1016/j.trc.2008.01.002
SISKOM – Stowarzyszenie Integracji Stołecznej Komunikacji. (2025). Aglomeracja warszawska. Studia komunikacyjne. https://siskom.waw.pl/planistyka-aglomeracja-sk.htm
Google Scholar
TomTom. (2023). Move. Pobrane 21 stycznia 2025 r. z: https://move.tomtom.com
Google Scholar
TomTom. (2024). TomTom Traffic Index [kategoria: Łódź. Ruch uliczny]. https://www.tomtom.com/traffic-index/lodz-traffic/
Google Scholar
Washington State Department of Transportation. (2014, September). Protocol for VISSIM simulation. https://wsdot.wa.gov/sites/default/files/2021-03/TrafficOps-VISSIM-Protocol.pdf
Google Scholar
Wesołowski, J. (2013). Transportowe problemy Łodzi. Plany, drogi, motywacje. Kronika Miasta Łodzi, 62(2), 45–55. https://bc.wbp.lodz.pl/dlibra/publication/110518/edition/105663/content
Google Scholar
Yang, Y., Qin, Y., Dong, H., Zhang, Q. (2016). Parameter calibration method of microscopic traffic flow simulation models based on orthogonal genetic algorithm. W: G. Polese i V. Deufamia (red.), Proceedings of the 22nd International Conference on Distributed Multimedia Systems (DMS 2016) (s. 55–60). KSI Research.
Google Scholar
DOI: https://doi.org/10.18293/DMS2016-047
Żochowska, R., Karoń, G. (2012). Przegląd literatury na temat zjawiska kongestii i zakłóceń ruchu w systemie transportowym miasta w aspekcie modelowania podróży. Zeszyty Naukowo-Techniczne Stowarzyszenia Inżynierów i Techników Komunikacji Rzeczpospolitej Polskiej. Oddział w Krakowie, (2(98)), 251–276. https://bibliotekanauki.pl/articles/249363.pdf
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
