Extreme events in pollen concentration in Poznań, Poland: seasonality, trends and health impact
DOI:
https://doi.org/10.18778/1427-9711.23.06Keywords:
Aerobiology, pollen season, extreme pollen events, allergy, pollen thresholdsAbstract
Aerobiology studies the biological particles in the air that affect human health, especially plant pollen that causes allergies. The purpose of this study is to describe and examine the pollen seasons of the following plants: plantain (Plantago sp.), mugwort (Artemisia sp.), alder (Alnus sp.), birch (Betula sp.), grasses (Poaceae sp.), and hazel (Corylus sp.) during the period 1996‒2021. The results show that each species experiences unique pollen seasons that are influenced by weather patterns. By comprehending these patterns, pollen thresholds essential for controlling pollen allergies and reducing negative health effects can be established.
Downloads
References
Adams-Groom B., Selby K., Derrett S., Frisk C.A., Pashley C.H., Satchwell J., King D., McKenzie G., Neilson R. 2022. Pollen season trends as markers of climate change impact: Betula, Quercus and Poaceae. Science of the Total Environment 831: Article 154882.
Google Scholar
DOI: https://doi.org/10.1016/j.scitotenv.2022.154882
Agache I., Akdis C.A. (Eds.). 2021. Global atlas of asthma (2nd ed., Vol. 1). European Academy of Allergy and Clinical Immunology. Retrieved from https://www.eaaci.org
Google Scholar
Barney J., Di Tommaso A. 2003. The biology of Canadian weeds. 118. Artemisia vulgaris L. Canadian Journal of Plant Science 83(1): 205‒215.
Google Scholar
DOI: https://doi.org/10.4141/P01-098
Belavadi V. 2013. Insect pollination manual (eBook). Bangalore, India.
Google Scholar
Biedermann T., Winther L., Till S.J., Panzner P., Knulst A., Valovirta E. 2019. Birch pollen allergy in Europe. Allergy 74(7): 1237‒1248.
Google Scholar
DOI: https://doi.org/10.1111/all.13758
Bogawski P., Grewling Ł., Nowak M., Smith M., Jackowiak B. 2014. Trends in atmospheric concentrations of weed pollen in the context of recent climate warming in Poznań (Western Poland). International Journal of Biometeorology 58(8): 1759‒1768.
Google Scholar
DOI: https://doi.org/10.1007/s00484-013-0781-5
Bovallius A., Roffey R. 1987. Aerobiology and the spread of microbial diseases. Defence Science Journal 37(2): 185‒204.
Google Scholar
DOI: https://doi.org/10.14429/dsj.37.5902
Britannica. 2020. 2023. https://www.britannica.com
Google Scholar
Calderon M., Brandt T. 2008. Treatment of grass pollen allergy: Focus on a standardized grass allergen extract – Grazax®. Therapeutics and Clinical Risk Management 4(6): 1255‒1260.
Google Scholar
DOI: https://doi.org/10.2147/TCRM.S3544
Carinanos P., Guerrero-Rascado J.L., Valle A.M., Cazorla A., Titos G., Foyo-Moreno I., Alados-Arboledas L., Díaz de la Guardia C. 2022. Assessing pollen extreme events over a Mediterranean site: Role of local surface meteorology. Atmospheric Environment 272: 118928.
Google Scholar
DOI: https://doi.org/10.1016/j.atmosenv.2021.118928
Central Statistics Office. 2011. Census 2011 results. Data.gov.ie. https://data.gov.ie/dataset/census-2011-results
Google Scholar
Charles M., Craigie R. 2008. Methods and theory in Quaternary palynology. Food and Energy 2.
Google Scholar
Cheung D., Dick E., Timmers M. 2003. Rhinovirus inhalation causes long-lasting excessive airway narrowing in response to methacholine in asthmatic subjects in vivo. American Journal of Respiratory and Critical Care Medicine 152(5): 1490‒1496.
Google Scholar
DOI: https://doi.org/10.1164/ajrccm.152.5.7582282
Choudhary N., Siddiqui M.B., Bi S., Khatoon S. 2014. Effect of seasonality and time after anthesis on the viability and longevity of Cannabis sativa pollen. Palynology 38(2): 235–241.
Google Scholar
DOI: https://doi.org/10.1080/01916122.2014.892906
Climate Central. (n.d.). Pollen season & climate change. Retrieved from https://www.climatecentral.org/climate-matters/pollen-season-climate-change
Google Scholar
Culley T.M., Weller S.G., Sakai A.K. 2002. The evolution of wind pollination in angiosperms. Trends in Ecology & Evolution 17(8): 361‒369.
Google Scholar
DOI: https://doi.org/10.1016/S0169-5347(02)02540-5
D’Amato G., Annesi-Maesano I., Urrutia-Pereira M., Del Giacco S., Rosario Filho N.A., Chong-Neto H.J., Sole D., Ansotegui I., Cecchi L., Sanduzzi Zamparelli A., Tedeschini E., Biagioni B., Murrieta-Aguttes D., D’Amato M. 2021. Thunderstorm allergy and asthma: State of the art. Multidisciplinary Respiratory Medicine 16(1): 806.
Google Scholar
DOI: https://doi.org/10.4081/mrm.2021.806
Damialis A., Fotiou C., Halley J.M. et al. 2011. Effects of environmental factors on pollen production in anemophilous woody species. Trees 25: 253–264.
Google Scholar
DOI: https://doi.org/10.1007/s00468-010-0502-1
Damialis T., Traidl-Hoffmann C., Treudler R. 2019. Climate change and pollen allergies. In Biodiversity and health in the face of climate change: 47–66.
Google Scholar
DOI: https://doi.org/10.1007/978-3-030-02318-8_3
Dąbrowska-Zapart K., Chłopek K., Malkiewicz M. 2018. Analysis of the plantain pollen season in selected Polish cities in 2018. Alergoprofil 14(4): 96‒100.
Google Scholar
DOI: https://doi.org/10.24292/01.AP.144171218
Duke J.A. 2001. Plantago major, [in:] Handbook of phytochemical constituents of GRAS herbs and other economic plants. CRC Press: 471.
Google Scholar
Edlund A.F., Swanson R., Preuss D. 2004. Pollen and stigma structure and function: The role of diversity in pollination. The Plant Cell 16 Suppl 1: S84‒S97. https://doi.org/10.1105/tpc.015800 Epub 2004 Apr 9. PMID: 15075396; PMCID: PMC2643401.
Google Scholar
DOI: https://doi.org/10.1105/tpc.015800
Emberlin J. 2003. Aerobiology, aerodynamics and pollen sampling. Postępy Dermatologii i Alergologii 20(4): 196‒199.
Google Scholar
European Climate and Health Observatory. (n.d.). European Climate and Health Observatory. European Environment Agency. Retrieved August 30, 2024, from https://climate-adapt.eea.europa.eu/en/observatory
Google Scholar
Falkowski M. 1982. Trawy polskie. Państwowe Wydawnictwo Rolnicze i Leśne.
Google Scholar
Farooq A. 2016. Mugwort (Artemisia vulgaris) oils, [in:] Essential oils in food preservation, flavor and safety. Elsevier: 573–579.
Google Scholar
DOI: https://doi.org/10.1016/B978-0-12-416641-7.00065-1
Fernstrom A., Goldblatt M. 2013. Aerobiology and its role in the transmission of infectious diseases. Journal of Pathogens 13: 493960.
Google Scholar
DOI: https://doi.org/10.1155/2013/493960
Frenguelli G. 2003a. Pollen structure and morphology. Postępy Dermatologii i Alergologii 20(4): 205‒207.
Google Scholar
Frenguelli G. 2003b. Basic microscopy, calculating the field of view, scanning of slides, sources of error. Postępy Dermatologii i Alergologii 20(4): 208‒210.
Google Scholar
Gilman E.F., Watson D.G. 1993. Acacia farnesiana. Sweet Acacia. USDA, Forest Serv., Fact Sheet ST-5. http://hort.ifas.ufl.edu/trees/acafara.pdf
Google Scholar
Global Atlas of Asthma. 2013. https://eaaci.org
Google Scholar
Grewling Ł., Jackowiak B., Nowak M., Uruska A., Smith M. 2012. Variations and trends of birch pollen seasons during 15 years (1996–2010) in relation to weather conditions in Poznań (Western Poland). Grana 51(4): 280‒292.
Google Scholar
DOI: https://doi.org/10.1080/00173134.2012.700727
Grewling Ł., Jenerowicz D., Bogawski P., Smith M., Nowak M., Frątczak A., Czarnecka-Operacz M. 2018. Cross-sensitization to Artemisia and Ambrosia pollen allergens in an area located outside of the current distribution range of Ambrosia. Advances in Dermatology and Allergology XXXV(1): 83–89.
Google Scholar
DOI: https://doi.org/10.5114/ada.2018.73167
Guerrero-Rascado J.L. 2022. Assessing pollen extreme events over a Mediterranean site: Role of local surface meteorology. IISTA-CEAMA.
Google Scholar
Hanslik T., Boelle P.Y., Flahault A. 2001. The control chart: An epidemiological tool for public health monitoring. Public Health 115(4): 277–281.
Google Scholar
DOI: https://doi.org/10.1038/sj.ph.1900782
Healthcare Services Group, Inc. (n.d.). ECAP. 2023. Retrieved 20th of February 2025. https://www.hcsgcorp.com/ecap23/
Google Scholar
Heinzerling L., Burbach G., Edenharter G. et al. 2009. GA2LEN skin test study I: GA2LEN harmonization of skin prick testing: Novel sensitization patterns for inhalant allergens in Europe. Allergy 64(10): 1498‒1506.
Google Scholar
DOI: https://doi.org/10.1111/j.1398-9995.2009.02093.x
Hirst J.M. 1952. An automatic volumetric spore trap. Annals of Applied Biology 39(2): 257–265.
Google Scholar
DOI: https://doi.org/10.1111/j.1744-7348.1952.tb00904.x
Hoedemaekers K., Derksen J., Hoogstrate S.W., Wolters-Arts M., Oh S.-A., Twell D., Mariani C., Rieu I. 2015. BURSTING POLLEN is required to organize the pollen germination plaque and pollen tube tip in Arabidopsis thaliana. New Phytologist 206(1): 255–267.
Google Scholar
DOI: https://doi.org/10.1111/nph.13200
Hoen P. 1999, April 16. Glossary of pollen and spore terminology. Second and revised edition (P. Hoen, Ed.). Retrieved July 21, 2014 from Laboratory of Palaeobotany and Palynology.
Google Scholar
Holm L.G., Plucknett D.L., Pancho J.V., Herberger J.P. 1977. The world’s worst weeds: Distribution and biology. University Press of Hawaii.
Google Scholar
https://github.com/bczernecki/imgw
Google Scholar
https://www.vdberk.pl/drzew/corylus-colurna/
Google Scholar
Intergovernmental Panel on Climate Change (IPCC). 2007. Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (Eds.)]. Cambridge University Press.
Google Scholar
Jager S. 2003. Plant taxonomy and nomenclature. Postępy Dermatologii i Allergologii 20(4): 218‒226.
Google Scholar
Kubik-Komar A., Kubera E., Piotrowska-Weryszko K. 2018. Selection of morphological features of pollen grains for chosen tree taxa. Biology Open 7(5).
Google Scholar
DOI: https://doi.org/10.1242/bio.031237
Levetin E. 2004. Methods for aeroallergen sampling. Current Allergy and Asthma Reports 4(5): 376‒383.
Google Scholar
DOI: https://doi.org/10.1007/s11882-004-0088-z
Lo F., Bitz C.M., Battisti D.S. et al. 2019. Pollen calendars and maps of allergenic pollen in North America. Aerobiologia 35: 613‒633.
Google Scholar
DOI: https://doi.org/10.1007/s10453-019-09601-2
Martynov А.I., Ilyina N.I., Luss L.V., Martynov А.А., Fedoskova Т.G., Andreev I.V. 2015. Peculiarities of pollen characteristics in the regions of chemical factor. Russian Allergology Journal 6: 12‒16.
Google Scholar
Míka V., Kohoutek A., Odstrčilová V. 2002. Characteristics of important diploid and tetraploid subspecies of Dactylis from the point of view of forage crop production. Rostlinná výroba 48(6): 243–248.
Google Scholar
DOI: https://doi.org/10.17221/4234-PSE
Myszkowska D. 2020. Aerobiological studies – Current state and future challenges. Alergoprofil 16(1): 8‒14.
Google Scholar
DOI: https://doi.org/10.24292/01.AP.161300320
Myszkowska D., Majewska R. 2014. Pollen grains as allergenic environmental factors: A new approach to forecasting pollen concentration during the season. Annals of Agricultural and Environmental Medicine 21(4): 681‒688.
Google Scholar
DOI: https://doi.org/10.5604/12321966.1129914
Nilsson S., Persson S. 1981. Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana 20: 179–182.
Google Scholar
DOI: https://doi.org/10.1080/00173138109427661
Palynological Database. 2023. https://www.paldat.org
Google Scholar
Pigg K.B., Manchester S.R., Wehr W.C. 2003. Corylus, Carpinus, and Palaeocarpinus (Betulaceae) from the Middle Eocene Klondike Mountain and Allenby Formations of Northwestern North America. International Journal of Plant Sciences 164(5): 807‒822.
Google Scholar
DOI: https://doi.org/10.1086/376816
Piotrowska K., Weryszko-Chmielewska E. 2003. Pollen count of selected taxa in the atmosphere of Lublin using two monitoring methods. Annals of Agricultural and Environmental Medicine 10(1): 79‒85.
Google Scholar
Puc M. 2007. The effect of meteorological conditions on hazel and alder pollen concentration in the air of Szczecin. Acta Agrobotanica 60(2): 65‒70.
Google Scholar
DOI: https://doi.org/10.5586/aa.2007.032
Punt W., Hoen P.P., Blackmore S., Nilsson S., Le Thomas A. 2007. Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology 143(1‒2): 1‒81.
Google Scholar
DOI: https://doi.org/10.1016/j.revpalbo.2006.06.008
RACGP. 2023. 2023 triennium. Royal Australian College of General Practitioners. Retrieved February 20, 2023 from https://www.racgp.org.au/education/professional-development/cpd/2023-triennium
Google Scholar
Ranpal S., Sieverts M., Wörl V., Kahlenberg G., Gilles S., Landgraf M. et al. 2022. Is pollen production of birch controlled by genetics and local conditions? International Journal of Environmental Research and Public Health 19(13): 8160.
Google Scholar
DOI: https://doi.org/10.3390/ijerph19138160
Rapiejko P., Jurkiewicz D., Lipiec A. 2022a. Very high birch pollen concentration in the air in selected Polish cities in 2022 – Clinical implications. Otolaryngologia Polska 76(6): 30‒36.
Google Scholar
DOI: https://doi.org/10.5604/01.3001.0016.0832
Rapiejko J., Malkiewicz M., Puc M. 2022b. Hazel pollen in the air of selected Polish cities in 2022. Alergoprofil 18(2): 20‒26.
Google Scholar
DOI: https://doi.org/10.24292/01.AP.182290622
Ratto F., Simmons B.I., Spake R., Zamora-Gutierrez V., McDonald M.A., Merriman J.C., Tremlett C.J., Poppy G.M., Peh K.S.-H., Dicks L.V. 2018. Global importance of vertebrate pollinators for plant reproductive success: A meta-analysis. Frontiers in Ecology and the Environment 16(2): 82‒90.
Google Scholar
DOI: https://doi.org/10.1002/fee.1763
Rauer D., Gilles S., Wimmer M., Frank U., Mueller M. et al. 2020. Ragweed plants grown under elevated CO₂ levels produce pollen which elicits stronger allergic lung inflammation. Allergy 76(6): 1718‒1730.
Google Scholar
DOI: https://doi.org/10.1111/all.14618
Salo P., Arbes S., Jaramillo R., Calatroni A., Weir C., Sever M., Hoppin J., Rose K., Liu A., Gergen P., Mitchell H., Zeldin D. 2014. Prevalence of allergic sensitization in the United States: Results from the National Health and Nutrition Examination Survey (NHANES) 2005‒2006. Journal of Allergy and Clinical Immunology 134(2): 350‒359. https://doi.org/10.1016/j.jaci.2013.12.1071
Google Scholar
DOI: https://doi.org/10.1016/j.jaci.2013.12.1071
Samoliński B., Raciborski F., Lipiec A., Tomaszewska A., Krzych-Fałta E., Samel-Kowalik P., Walkiewicz A., Lusawa A., Borowicz J., Komorowski J., Samolińska-Zawisza U., Sybilski A.J., Piekarska B., Nowicka A. 2014. Epidemiologia chorób alergicznych w Polsce (ECAP). Polish Journal of Allergology 1: 10–18.
Google Scholar
DOI: https://doi.org/10.1016/j.alergo.2014.03.008
Savitsky E. 2002. Ecology and distribution of pollen of allergenic plants. Allergy, Asthma & Immunology Research 14(2): 168‒181.
Google Scholar
Schmitz R., Ellert U., Kalcklösch M., Dahm S., Thamm M. 2013. Patterns of sensitization to inhalant and food allergens: Findings from the German Health Interview and Examination Survey for Children and Adolescents. International Archives of Allergy and Immunology 162(3): 263‒270.
Google Scholar
DOI: https://doi.org/10.1159/000353344
Smith M., Emberlin J., Stach A., Czarnecka-Operacz M., Jenerowicz D., Silny W. 2007. Regional importance of Alnus pollen as an aeroallergen: A comparative study of Alnus pollen counts from Worcester (UK) and Poznań (Poland). Annals of Agricultural and Environmental Medicine 14: 123‒128.
Google Scholar
DOI: https://doi.org/10.1097/01.WOX.0000301387.88063.5b
Smith M., Matavulj P., Mimić G., Panić M., Grewling Ł., Šikoparija B. 2022. Why should we care about high temporal resolution monitoring of bioaerosols in ambient air? Science of The Total Environment 826: 154231.
Google Scholar
DOI: https://doi.org/10.1016/j.scitotenv.2022.154231
Sofiev M., Bergmann C. 2013. Allergenic pollen: A review of the production, release, distribution, and health impacts. Springer.
Google Scholar
DOI: https://doi.org/10.1007/978-94-007-4881-1
Stach A. 2003. The use of Hirst volumetric trap, preparation of drums and slides. Advances in Dermatology and Allergology / Postępy Dermatologii i Alergologii 20(4): 246‒249.
Google Scholar
Sterk P., Fabbri L., Quanjer P. 1993. Airway responsiveness: Standardized challenge testing with pharmacological, physical, and sensitizing stimuli in adults. European Respiratory Journal 6: 53‒83.
Google Scholar
DOI: https://doi.org/10.1183/09041950.053s1693
Strzelczyk Z., Roszkowski M., Feleszko W., Krauze A. 2020. Avoidance of allergens as an environmental method in the prevention of inhaled allergy symptoms. Journal Name 48(6): 745‒752.
Google Scholar
DOI: https://doi.org/10.1016/j.aller.2019.06.011
Svenning J. 2002. A review of natural vegetation openness in north-western Europe. Biological Conservation 104(2): 133‒148.
Google Scholar
DOI: https://doi.org/10.1016/S0006-3207(01)00162-8
Taylor P., Jacobson K., House J. 2007. Links between pollen, atopy, and the asthma epidemic. International Archives of Allergy and Immunology 144: 162‒170.
Google Scholar
DOI: https://doi.org/10.1159/000103230
Tomalak M., Rossi E., Ferrini F., Moro P.A. 2010. Negative aspects and hazardous effects of forest environment on human health, [in:] Forests, trees and human health. Springer Netherlands: 77‒124.
Google Scholar
DOI: https://doi.org/10.1007/978-90-481-9806-1_4
Tutin T.G., Heywood V.H., Burges N.A., Moore D.M., Valentine D.H., Walters S.M., Webb D.A. 1972. Flora Europaea. Vol. 3: Diapensiaceae to Myoporaceae (pp. 370, maps I‒V). Cambridge University Press.
Google Scholar
United States Department of Agriculture. 2020. U.S. Forest Service. Retrieved from https://www.fs.fed.us
Google Scholar
Wayne P., Foster S., Connolly J., Bazzaz F., Epstein P. 2002. Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO₂-enriched atmospheres. Annals of Allergy, Asthma & Immunology 88(3): 279‒282.
Google Scholar
DOI: https://doi.org/10.1016/S1081-1206(10)62009-1
Wopfner N., Gadermaier G., Egger M., Asero R., Ebner C., Jahn-Schmid B., Ferreira F. 2005. The spectrum of allergens in ragweed and mugwort pollen. International Archives of Allergy and Immunology 138(4): 337‒346.
Google Scholar
DOI: https://doi.org/10.1159/000089188
Zając A., Zając M. 2001. Atlas rozmieszczenia roślin naczyniowych w Polsce. Wydawnictwo Naukowe, Kraków.
Google Scholar
Ziello C., Sparks T.H., Estrella N., Belmonte J., Bergmann K.C., Bucher E., Brighetti M.A., Damialis A., Detandt M., Galán C., Gehrig R., Grewling L., Gutiérrez Bustillo A.M., Hallsdóttir M., Kockhans-Bieda M.C., De Linares C., Myszkowska D., Pàldy A., Sánchez A., Smith M., Thibaudon M., Travaglini A., Uruska A., Valencia-Barrera R.M., Vokou D., Wachter R., de Weger L.A., Menzel A. 2012. Changes to airborne pollen counts across Europe. PLoS One 7(4): e34076. https://doi.org/10.1371/journal.pone.0034076
Google Scholar
DOI: https://doi.org/10.1371/journal.pone.0034076
Ziska L.H., Makra L., Harry S.K., Bruffaerts N., Hendrickx M. et al. 2019. Temperature-related changes in airborne allergenic pollen abundance and seasonality across the Northern Hemisphere: A retrospective data analysis. The Lancet Planetary Health 3(3): e124-e131.
Google Scholar
DOI: https://doi.org/10.1016/S2542-5196(19)30015-4
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.