Extreme events in pollen concentration in Poznań, Poland: seasonality, trends and health impact

Authors

DOI:

https://doi.org/10.18778/1427-9711.23.06

Keywords:

Aerobiology, pollen season, extreme pollen events, allergy, pollen thresholds

Abstract

Aerobiology studies the biological particles in the air that affect human health, especially plant pollen that causes allergies. The purpose of this study is to describe and examine the pollen seasons of the following plants: plantain (Plantago sp.), mugwort (Artemisia sp.), alder (Alnus sp.), birch (Betula sp.), grasses (Poaceae sp.), and hazel (Corylus sp.) during the period 1996‒2021. The results show that each species experiences unique pollen seasons that are influenced by weather patterns. By comprehending these patterns, pollen thresholds essential for controlling pollen allergies and reducing negative health effects can be established.

Downloads

References

Adams-Groom B., Selby K., Derrett S., Frisk C.A., Pashley C.H., Satchwell J., King D., McKenzie G., Neilson R. 2022. Pollen season trends as markers of climate change impact: Betula, Quercus and Poaceae. Science of the Total Environment 831: Article 154882.
Google Scholar DOI: https://doi.org/10.1016/j.scitotenv.2022.154882

Agache I., Akdis C.A. (Eds.). 2021. Global atlas of asthma (2nd ed., Vol. 1). European Academy of Allergy and Clinical Immunology. Retrieved from https://www.eaaci.org
Google Scholar

Barney J., Di Tommaso A. 2003. The biology of Canadian weeds. 118. Artemisia vulgaris L. Canadian Journal of Plant Science 83(1): 205‒215.
Google Scholar DOI: https://doi.org/10.4141/P01-098

Belavadi V. 2013. Insect pollination manual (eBook). Bangalore, India.
Google Scholar

Biedermann T., Winther L., Till S.J., Panzner P., Knulst A., Valovirta E. 2019. Birch pollen allergy in Europe. Allergy 74(7): 1237‒1248.
Google Scholar DOI: https://doi.org/10.1111/all.13758

Bogawski P., Grewling Ł., Nowak M., Smith M., Jackowiak B. 2014. Trends in atmospheric concentrations of weed pollen in the context of recent climate warming in Poznań (Western Poland). International Journal of Biometeorology 58(8): 1759‒1768.
Google Scholar DOI: https://doi.org/10.1007/s00484-013-0781-5

Bovallius A., Roffey R. 1987. Aerobiology and the spread of microbial diseases. Defence Science Journal 37(2): 185‒204.
Google Scholar DOI: https://doi.org/10.14429/dsj.37.5902

Britannica. 2020. 2023. https://www.britannica.com
Google Scholar

Calderon M., Brandt T. 2008. Treatment of grass pollen allergy: Focus on a standardized grass allergen extract – Grazax®. Therapeutics and Clinical Risk Management 4(6): 1255‒1260.
Google Scholar DOI: https://doi.org/10.2147/TCRM.S3544

Carinanos P., Guerrero-Rascado J.L., Valle A.M., Cazorla A., Titos G., Foyo-Moreno I., Alados-Arboledas L., Díaz de la Guardia C. 2022. Assessing pollen extreme events over a Mediterranean site: Role of local surface meteorology. Atmospheric Environment 272: 118928.
Google Scholar DOI: https://doi.org/10.1016/j.atmosenv.2021.118928

Central Statistics Office. 2011. Census 2011 results. Data.gov.ie. https://data.gov.ie/dataset/census-2011-results
Google Scholar

Charles M., Craigie R. 2008. Methods and theory in Quaternary palynology. Food and Energy 2.
Google Scholar

Cheung D., Dick E., Timmers M. 2003. Rhinovirus inhalation causes long-lasting excessive airway narrowing in response to methacholine in asthmatic subjects in vivo. American Journal of Respiratory and Critical Care Medicine 152(5): 1490‒1496.
Google Scholar DOI: https://doi.org/10.1164/ajrccm.152.5.7582282

Choudhary N., Siddiqui M.B., Bi S., Khatoon S. 2014. Effect of seasonality and time after anthesis on the viability and longevity of Cannabis sativa pollen. Palynology 38(2): 235–241.
Google Scholar DOI: https://doi.org/10.1080/01916122.2014.892906

Climate Central. (n.d.). Pollen season & climate change. Retrieved from https://www.climatecentral.org/climate-matters/pollen-season-climate-change
Google Scholar

Culley T.M., Weller S.G., Sakai A.K. 2002. The evolution of wind pollination in angiosperms. Trends in Ecology & Evolution 17(8): 361‒369.
Google Scholar DOI: https://doi.org/10.1016/S0169-5347(02)02540-5

D’Amato G., Annesi-Maesano I., Urrutia-Pereira M., Del Giacco S., Rosario Filho N.A., Chong-Neto H.J., Sole D., Ansotegui I., Cecchi L., Sanduzzi Zamparelli A., Tedeschini E., Biagioni B., Murrieta-Aguttes D., D’Amato M. 2021. Thunderstorm allergy and asthma: State of the art. Multidisciplinary Respiratory Medicine 16(1): 806.
Google Scholar DOI: https://doi.org/10.4081/mrm.2021.806

Damialis A., Fotiou C., Halley J.M. et al. 2011. Effects of environmental factors on pollen production in anemophilous woody species. Trees 25: 253–264.
Google Scholar DOI: https://doi.org/10.1007/s00468-010-0502-1

Damialis T., Traidl-Hoffmann C., Treudler R. 2019. Climate change and pollen allergies. In Biodiversity and health in the face of climate change: 47–66.
Google Scholar DOI: https://doi.org/10.1007/978-3-030-02318-8_3

Dąbrowska-Zapart K., Chłopek K., Malkiewicz M. 2018. Analysis of the plantain pollen season in selected Polish cities in 2018. Alergoprofil 14(4): 96‒100.
Google Scholar DOI: https://doi.org/10.24292/01.AP.144171218

Duke J.A. 2001. Plantago major, [in:] Handbook of phytochemical constituents of GRAS herbs and other economic plants. CRC Press: 471.
Google Scholar

Edlund A.F., Swanson R., Preuss D. 2004. Pollen and stigma structure and function: The role of diversity in pollination. The Plant Cell 16 Suppl 1: S84‒S97. https://doi.org/10.1105/tpc.015800 Epub 2004 Apr 9. PMID: 15075396; PMCID: PMC2643401.
Google Scholar DOI: https://doi.org/10.1105/tpc.015800

Emberlin J. 2003. Aerobiology, aerodynamics and pollen sampling. Postępy Dermatologii i Alergologii 20(4): 196‒199.
Google Scholar

European Climate and Health Observatory. (n.d.). European Climate and Health Observatory. European Environment Agency. Retrieved August 30, 2024, from https://climate-adapt.eea.europa.eu/en/observatory
Google Scholar

Falkowski M. 1982. Trawy polskie. Państwowe Wydawnictwo Rolnicze i Leśne.
Google Scholar

Farooq A. 2016. Mugwort (Artemisia vulgaris) oils, [in:] Essential oils in food preservation, flavor and safety. Elsevier: 573–579.
Google Scholar DOI: https://doi.org/10.1016/B978-0-12-416641-7.00065-1

Fernstrom A., Goldblatt M. 2013. Aerobiology and its role in the transmission of infectious diseases. Journal of Pathogens 13: 493960.
Google Scholar DOI: https://doi.org/10.1155/2013/493960

Frenguelli G. 2003a. Pollen structure and morphology. Postępy Dermatologii i Alergologii 20(4): 205‒207.
Google Scholar

Frenguelli G. 2003b. Basic microscopy, calculating the field of view, scanning of slides, sources of error. Postępy Dermatologii i Alergologii 20(4): 208‒210.
Google Scholar

Gilman E.F., Watson D.G. 1993. Acacia farnesiana. Sweet Acacia. USDA, Forest Serv., Fact Sheet ST-5. http://hort.ifas.ufl.edu/trees/acafara.pdf
Google Scholar

Global Atlas of Asthma. 2013. https://eaaci.org
Google Scholar

Grewling Ł., Jackowiak B., Nowak M., Uruska A., Smith M. 2012. Variations and trends of birch pollen seasons during 15 years (1996–2010) in relation to weather conditions in Poznań (Western Poland). Grana 51(4): 280‒292.
Google Scholar DOI: https://doi.org/10.1080/00173134.2012.700727

Grewling Ł., Jenerowicz D., Bogawski P., Smith M., Nowak M., Frątczak A., Czarnecka-Operacz M. 2018. Cross-sensitization to Artemisia and Ambrosia pollen allergens in an area located outside of the current distribution range of Ambrosia. Advances in Dermatology and Allergology XXXV(1): 83–89.
Google Scholar DOI: https://doi.org/10.5114/ada.2018.73167

Guerrero-Rascado J.L. 2022. Assessing pollen extreme events over a Mediterranean site: Role of local surface meteorology. IISTA-CEAMA.
Google Scholar

Hanslik T., Boelle P.Y., Flahault A. 2001. The control chart: An epidemiological tool for public health monitoring. Public Health 115(4): 277–281.
Google Scholar DOI: https://doi.org/10.1038/sj.ph.1900782

Healthcare Services Group, Inc. (n.d.). ECAP. 2023. Retrieved 20th of February 2025. https://www.hcsgcorp.com/ecap23/
Google Scholar

Heinzerling L., Burbach G., Edenharter G. et al. 2009. GA2LEN skin test study I: GA2LEN harmonization of skin prick testing: Novel sensitization patterns for inhalant allergens in Europe. Allergy 64(10): 1498‒1506.
Google Scholar DOI: https://doi.org/10.1111/j.1398-9995.2009.02093.x

Hirst J.M. 1952. An automatic volumetric spore trap. Annals of Applied Biology 39(2): 257–265.
Google Scholar DOI: https://doi.org/10.1111/j.1744-7348.1952.tb00904.x

Hoedemaekers K., Derksen J., Hoogstrate S.W., Wolters-Arts M., Oh S.-A., Twell D., Mariani C., Rieu I. 2015. BURSTING POLLEN is required to organize the pollen germination plaque and pollen tube tip in Arabidopsis thaliana. New Phytologist 206(1): 255–267.
Google Scholar DOI: https://doi.org/10.1111/nph.13200

Hoen P. 1999, April 16. Glossary of pollen and spore terminology. Second and revised edition (P. Hoen, Ed.). Retrieved July 21, 2014 from Laboratory of Palaeobotany and Palynology.
Google Scholar

Holm L.G., Plucknett D.L., Pancho J.V., Herberger J.P. 1977. The world’s worst weeds: Distribution and biology. University Press of Hawaii.
Google Scholar

https://github.com/bczernecki/imgw
Google Scholar

https://www.vdberk.pl/drzew/corylus-colurna/
Google Scholar

Intergovernmental Panel on Climate Change (IPCC). 2007. Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller (Eds.)]. Cambridge University Press.
Google Scholar

Jager S. 2003. Plant taxonomy and nomenclature. Postępy Dermatologii i Allergologii 20(4): 218‒226.
Google Scholar

Kubik-Komar A., Kubera E., Piotrowska-Weryszko K. 2018. Selection of morphological features of pollen grains for chosen tree taxa. Biology Open 7(5).
Google Scholar DOI: https://doi.org/10.1242/bio.031237

Levetin E. 2004. Methods for aeroallergen sampling. Current Allergy and Asthma Reports 4(5): 376‒383.
Google Scholar DOI: https://doi.org/10.1007/s11882-004-0088-z

Lo F., Bitz C.M., Battisti D.S. et al. 2019. Pollen calendars and maps of allergenic pollen in North America. Aerobiologia 35: 613‒633.
Google Scholar DOI: https://doi.org/10.1007/s10453-019-09601-2

Martynov А.I., Ilyina N.I., Luss L.V., Martynov А.А., Fedoskova Т.G., Andreev I.V. 2015. Peculiarities of pollen characteristics in the regions of chemical factor. Russian Allergology Journal 6: 12‒16.
Google Scholar

Míka V., Kohoutek A., Odstrčilová V. 2002. Characteristics of important diploid and tetraploid subspecies of Dactylis from the point of view of forage crop production. Rostlinná výroba 48(6): 243–248.
Google Scholar DOI: https://doi.org/10.17221/4234-PSE

Myszkowska D. 2020. Aerobiological studies – Current state and future challenges. Alergoprofil 16(1): 8‒14.
Google Scholar DOI: https://doi.org/10.24292/01.AP.161300320

Myszkowska D., Majewska R. 2014. Pollen grains as allergenic environmental factors: A new approach to forecasting pollen concentration during the season. Annals of Agricultural and Environmental Medicine 21(4): 681‒688.
Google Scholar DOI: https://doi.org/10.5604/12321966.1129914

Nilsson S., Persson S. 1981. Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana 20: 179–182.
Google Scholar DOI: https://doi.org/10.1080/00173138109427661

Palynological Database. 2023. https://www.paldat.org
Google Scholar

Pigg K.B., Manchester S.R., Wehr W.C. 2003. Corylus, Carpinus, and Palaeocarpinus (Betulaceae) from the Middle Eocene Klondike Mountain and Allenby Formations of Northwestern North America. International Journal of Plant Sciences 164(5): 807‒822.
Google Scholar DOI: https://doi.org/10.1086/376816

Piotrowska K., Weryszko-Chmielewska E. 2003. Pollen count of selected taxa in the atmosphere of Lublin using two monitoring methods. Annals of Agricultural and Environmental Medicine 10(1): 79‒85.
Google Scholar

Puc M. 2007. The effect of meteorological conditions on hazel and alder pollen concentration in the air of Szczecin. Acta Agrobotanica 60(2): 65‒70.
Google Scholar DOI: https://doi.org/10.5586/aa.2007.032

Punt W., Hoen P.P., Blackmore S., Nilsson S., Le Thomas A. 2007. Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology 143(1‒2): 1‒81.
Google Scholar DOI: https://doi.org/10.1016/j.revpalbo.2006.06.008

RACGP. 2023. 2023 triennium. Royal Australian College of General Practitioners. Retrieved February 20, 2023 from https://www.racgp.org.au/education/professional-development/cpd/2023-triennium
Google Scholar

Ranpal S., Sieverts M., Wörl V., Kahlenberg G., Gilles S., Landgraf M. et al. 2022. Is pollen production of birch controlled by genetics and local conditions? International Journal of Environmental Research and Public Health 19(13): 8160.
Google Scholar DOI: https://doi.org/10.3390/ijerph19138160

Rapiejko P., Jurkiewicz D., Lipiec A. 2022a. Very high birch pollen concentration in the air in selected Polish cities in 2022 – Clinical implications. Otolaryngologia Polska 76(6): 30‒36.
Google Scholar DOI: https://doi.org/10.5604/01.3001.0016.0832

Rapiejko J., Malkiewicz M., Puc M. 2022b. Hazel pollen in the air of selected Polish cities in 2022. Alergoprofil 18(2): 20‒26.
Google Scholar DOI: https://doi.org/10.24292/01.AP.182290622

Ratto F., Simmons B.I., Spake R., Zamora-Gutierrez V., McDonald M.A., Merriman J.C., Tremlett C.J., Poppy G.M., Peh K.S.-H., Dicks L.V. 2018. Global importance of vertebrate pollinators for plant reproductive success: A meta-analysis. Frontiers in Ecology and the Environment 16(2): 82‒90.
Google Scholar DOI: https://doi.org/10.1002/fee.1763

Rauer D., Gilles S., Wimmer M., Frank U., Mueller M. et al. 2020. Ragweed plants grown under elevated CO₂ levels produce pollen which elicits stronger allergic lung inflammation. Allergy 76(6): 1718‒1730.
Google Scholar DOI: https://doi.org/10.1111/all.14618

Salo P., Arbes S., Jaramillo R., Calatroni A., Weir C., Sever M., Hoppin J., Rose K., Liu A., Gergen P., Mitchell H., Zeldin D. 2014. Prevalence of allergic sensitization in the United States: Results from the National Health and Nutrition Examination Survey (NHANES) 2005‒2006. Journal of Allergy and Clinical Immunology 134(2): 350‒359. https://doi.org/10.1016/j.jaci.2013.12.1071
Google Scholar DOI: https://doi.org/10.1016/j.jaci.2013.12.1071

Samoliński B., Raciborski F., Lipiec A., Tomaszewska A., Krzych-Fałta E., Samel-Kowalik P., Walkiewicz A., Lusawa A., Borowicz J., Komorowski J., Samolińska-Zawisza U., Sybilski A.J., Piekarska B., Nowicka A. 2014. Epidemiologia chorób alergicznych w Polsce (ECAP). Polish Journal of Allergology 1: 10–18.
Google Scholar DOI: https://doi.org/10.1016/j.alergo.2014.03.008

Savitsky E. 2002. Ecology and distribution of pollen of allergenic plants. Allergy, Asthma & Immunology Research 14(2): 168‒181.
Google Scholar

Schmitz R., Ellert U., Kalcklösch M., Dahm S., Thamm M. 2013. Patterns of sensitization to inhalant and food allergens: Findings from the German Health Interview and Examination Survey for Children and Adolescents. International Archives of Allergy and Immunology 162(3): 263‒270.
Google Scholar DOI: https://doi.org/10.1159/000353344

Smith M., Emberlin J., Stach A., Czarnecka-Operacz M., Jenerowicz D., Silny W. 2007. Regional importance of Alnus pollen as an aeroallergen: A comparative study of Alnus pollen counts from Worcester (UK) and Poznań (Poland). Annals of Agricultural and Environmental Medicine 14: 123‒128.
Google Scholar DOI: https://doi.org/10.1097/01.WOX.0000301387.88063.5b

Smith M., Matavulj P., Mimić G., Panić M., Grewling Ł., Šikoparija B. 2022. Why should we care about high temporal resolution monitoring of bioaerosols in ambient air? Science of The Total Environment 826: 154231.
Google Scholar DOI: https://doi.org/10.1016/j.scitotenv.2022.154231

Sofiev M., Bergmann C. 2013. Allergenic pollen: A review of the production, release, distribution, and health impacts. Springer.
Google Scholar DOI: https://doi.org/10.1007/978-94-007-4881-1

Stach A. 2003. The use of Hirst volumetric trap, preparation of drums and slides. Advances in Dermatology and Allergology / Postępy Dermatologii i Alergologii 20(4): 246‒249.
Google Scholar

Sterk P., Fabbri L., Quanjer P. 1993. Airway responsiveness: Standardized challenge testing with pharmacological, physical, and sensitizing stimuli in adults. European Respiratory Journal 6: 53‒83.
Google Scholar DOI: https://doi.org/10.1183/09041950.053s1693

Strzelczyk Z., Roszkowski M., Feleszko W., Krauze A. 2020. Avoidance of allergens as an environmental method in the prevention of inhaled allergy symptoms. Journal Name 48(6): 745‒752.
Google Scholar DOI: https://doi.org/10.1016/j.aller.2019.06.011

Svenning J. 2002. A review of natural vegetation openness in north-western Europe. Biological Conservation 104(2): 133‒148.
Google Scholar DOI: https://doi.org/10.1016/S0006-3207(01)00162-8

Taylor P., Jacobson K., House J. 2007. Links between pollen, atopy, and the asthma epidemic. International Archives of Allergy and Immunology 144: 162‒170.
Google Scholar DOI: https://doi.org/10.1159/000103230

Tomalak M., Rossi E., Ferrini F., Moro P.A. 2010. Negative aspects and hazardous effects of forest environment on human health, [in:] Forests, trees and human health. Springer Netherlands: 77‒124.
Google Scholar DOI: https://doi.org/10.1007/978-90-481-9806-1_4

Tutin T.G., Heywood V.H., Burges N.A., Moore D.M., Valentine D.H., Walters S.M., Webb D.A. 1972. Flora Europaea. Vol. 3: Diapensiaceae to Myoporaceae (pp. 370, maps I‒V). Cambridge University Press.
Google Scholar

United States Department of Agriculture. 2020. U.S. Forest Service. Retrieved from https://www.fs.fed.us
Google Scholar

Wayne P., Foster S., Connolly J., Bazzaz F., Epstein P. 2002. Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO₂-enriched atmospheres. Annals of Allergy, Asthma & Immunology 88(3): 279‒282.
Google Scholar DOI: https://doi.org/10.1016/S1081-1206(10)62009-1

Wopfner N., Gadermaier G., Egger M., Asero R., Ebner C., Jahn-Schmid B., Ferreira F. 2005. The spectrum of allergens in ragweed and mugwort pollen. International Archives of Allergy and Immunology 138(4): 337‒346.
Google Scholar DOI: https://doi.org/10.1159/000089188

Zając A., Zając M. 2001. Atlas rozmieszczenia roślin naczyniowych w Polsce. Wydawnictwo Naukowe, Kraków.
Google Scholar

Ziello C., Sparks T.H., Estrella N., Belmonte J., Bergmann K.C., Bucher E., Brighetti M.A., Damialis A., Detandt M., Galán C., Gehrig R., Grewling L., Gutiérrez Bustillo A.M., Hallsdóttir M., Kockhans-Bieda M.C., De Linares C., Myszkowska D., Pàldy A., Sánchez A., Smith M., Thibaudon M., Travaglini A., Uruska A., Valencia-Barrera R.M., Vokou D., Wachter R., de Weger L.A., Menzel A. 2012. Changes to airborne pollen counts across Europe. PLoS One 7(4): e34076. https://doi.org/10.1371/journal.pone.0034076
Google Scholar DOI: https://doi.org/10.1371/journal.pone.0034076

Ziska L.H., Makra L., Harry S.K., Bruffaerts N., Hendrickx M. et al. 2019. Temperature-related changes in airborne allergenic pollen abundance and seasonality across the Northern Hemisphere: A retrospective data analysis. The Lancet Planetary Health 3(3): e124-e131.
Google Scholar DOI: https://doi.org/10.1016/S2542-5196(19)30015-4

Downloads

Published

2024-12-31

How to Cite

Zalinian, M. (2024). Extreme events in pollen concentration in Poznań, Poland: seasonality, trends and health impact. Acta Universitatis Lodziensis. Folia Geographica Physica, (23), 61–88. https://doi.org/10.18778/1427-9711.23.06

Issue

Section

Articles