Investment Risk Measurement Based on Quantiles and Expectiles
DOI:
https://doi.org/10.18778/0208-6018.338.13Keywords:
quantile, expectile, VaR, CVaR, least asymmetrically weighted squaresAbstract
In the presented research, we attempt to examine special investment risk measurement. We use quantile regression as a model by describing more general properties of the response distribution. In quantile regression, we assume regression effects on the conditional quantile function of the response. In regression modelling, the focus is on extending linear regression (OLS), and in this paper we seek to apply expectile regression. The purpose of using both approaches is investment risk measurement. Both regression models are a version of least weighted squares model. The families of risk measures most commonly used in practice are the Value‑at‑Risk (VaR) and the Conditional Value‑at‑Risk (CVaR), which can be estimated by quantiles or expectiles in the tail of the response distribution.
Downloads
References
Aigner D., Amemiya T., Poirier D. (1976), On the estimation of production frontiers: Maximum likelihood estimation of the parameters of a discontinuous density function, “Journal of Economic Review”, vol. 17(2), pp. 377–396.
Google Scholar
Artzner P., Delbaen F., Eber J.M., Heath D. (1998), Coherent measures of risk, https://people.math.ethz.ch/~delbaen/ftp/preprints/CoherentMF.pdf [accessed: 12.09.2018].
Google Scholar
Bellini F., Bignozzi V. (2013), Elicitable risk measures, Working Paper, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2334746 [accessed: 12.09.2018].
Google Scholar
Breckling J., Chambers R. (1988), M‑quantiles, “Biometrika”, vol. 75, pp. 761–772.
Google Scholar
Emmer S., Kratz M., Tasche D. (2013), What is the best risk measure in practice? a comparison of standard measures, http://arxiv.org/abs/1312.1645 [accessed: 20.05.2018].
Google Scholar
Fissler T., Ziegel J.F. (2016), Higher order elicitability and Osband’s principle, “Annals of Statistics”, vol. 4, pp. 1680–1707.
Google Scholar
Föllmer H., Schied A. (2002), Convex measures of risk and trading constraints, “Finance and Stochastics”, vol. 6, issue 4, pp. 429–447.
Google Scholar
Gneiting T. (2011), Making and evaluating point forecasts, “Journal of the American Statistical Association”, vol. 106(494), pp. 746–762.
Google Scholar
Koenker R., Bassett G. (1978), Regression quantiles, “Econometrica”, vol. 46(1), pp. 33–50.
Google Scholar
Koenker R. (2005), Quantile regression, Cambridge University Press, Cambridge.
Google Scholar
Newey W.K., Powell J.L. (1987), Asymmetric least squares estimation and testing, “Econometrica”, vol. 55(4), pp. 819–847.
Google Scholar
Rockafellar R.T., Uryasev S. (2000), Optimization of conditional value‑at‑risk, “The Journal of Risk”, vol. 2(3), pp. 21–41.
Google Scholar
Rockafellar R.T., Uryasev S. (2002), Conditional Value‑at‑Risk for General Loss Distributions, “Journal of Banking and Finance”, vol. 26, pp. 1443–1471.
Google Scholar
Sobotka F., Schnabel S., Schulze Waltrup L., Eilers P., Kneib T., Kauermann G. (2011), Expectreg: Expectile and quantile regression, R package version 0.25.
Google Scholar
Sobotka F., Kneib T. (2012), Geoadditive expectile regression, “Computational Statistics and Data Analysis”, vol. 56, pp. 755–767.
Google Scholar
Trzpiot G. (2007a), Decomposition of Risk and Quantile Risk Measures, [in:] Dynamiczne Modele Ekonometryczne, “Prace Naukowe Uniwersytetu Mikołaja Kopernika w Toruniu”, pp. 35–42.
Google Scholar
Trzpiot G. (2007b), Regresja kwantylowa a estymacja VaR, “Prace Naukowe Akademii Ekonomicznej we Wrocławiu”, vol. 1176, pp. 465–471.
Google Scholar
Trzpiot G. (2008), Implementacja metodologii regresji kwantylowej w estymacji VaR, “Studia i Prace”, no. 9, Uniwersytet Szczeciński, Szczecin, pp. 316–323.
Google Scholar
Trzpiot G. (2009a), Application weighted VaR in capital allocation, “Polish Journal of Environmental Studies”, vol. 18, no. 5B, pp. 203–208.
Google Scholar
Trzpiot G. (2009b), Estimation methods for quantile regression, “Studia Ekonomiczne. Zeszyty Naukowe Akademii Ekonomicznej w Katowicach”, vol. 53, pp. 81–90.
Google Scholar
Trzpiot G. (2016), Semi‑parametric risk measures, “Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach”, vol. 288(5), pp. 108–120.
Google Scholar
Trzpiot G. (red.) (2010), Wielowymiarowe metody statystyczne w analizie ryzyka inwestycyjnego, Polskie Wydawnictwo Ekonomiczne, Warszawa.
Google Scholar
Trzpiot G., Krężołek D. (2009), Quantiles ratio risk measures for stable distributions models in finance, “Studia Ekonomiczne. Zeszyty Naukowe Akademii Ekonomicznej w Katowicach”, vol. 53, pp. 109–120.
Google Scholar
Trzpiot G., Majewska J. (2010), Estimation of Value at Risk: Extreme value and robust approaches, “Operation Research and Decisions”, vol. 20, no. 1, pp. 131–143.
Google Scholar
Ziegel J.F. (2016), Coherence and elicitability, “Mathematical Finance”, vol. 26, pp. 901–918.
Google Scholar