Investment Risk Measurement Based on Quantiles and Expectiles

Authors

  • Grażyna Trzpiot University of Economics in Katowice, Faculty of Informatics and Communication, Department of Demography and Economic Statistics

DOI:

https://doi.org/10.18778/0208-6018.338.13

Keywords:

quantile, expectile, VaR, CVaR, least asymmetrically weighted squares

Abstract

In the presented research, we attempt to examine special investment risk measurement. We use quantile regression as a model by describing more general properties of the response distribution. In quantile regression, we assume regression effects on the conditional quantile function of the response. In regression modelling, the focus is on extending linear regression (OLS), and in this paper we seek to apply expectile regression. The purpose of using both approaches is investment risk measurement. Both regression models are a version of least weighted squares model. The families of risk measures most commonly used in practice are the Value‑at‑Risk (VaR) and the Conditional Value‑at‑Risk (CVaR), which can be estimated by quantiles or expectiles in the tail of the response distribution.

Downloads

Download data is not yet available.

References

Aigner D., Amemiya T., Poirier D. (1976), On the estimation of production frontiers: Maximum likelihood estimation of the parameters of a discontinuous density function, “Journal of Economic Review”, vol. 17(2), pp. 377–396.
Google Scholar

Artzner P., Delbaen F., Eber J.M., Heath D. (1998), Coherent measures of risk, https://people.math.ethz.ch/~delbaen/ftp/preprints/CoherentMF.pdf [accessed: 12.09.2018].
Google Scholar

Bellini F., Bignozzi V. (2013), Elicitable risk measures, Working Paper, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2334746 [accessed: 12.09.2018].
Google Scholar

Breckling J., Chambers R. (1988), M‑quantiles, “Biometrika”, vol. 75, pp. 761–772.
Google Scholar

Emmer S., Kratz M., Tasche D. (2013), What is the best risk measure in practice? a comparison of standard measures, http://arxiv.org/abs/1312.1645 [accessed: 20.05.2018].
Google Scholar

Fissler T., Ziegel J.F. (2016), Higher order elicitability and Osband’s principle, “Annals of Statistics”, vol. 4, pp. 1680–1707.
Google Scholar

Föllmer H., Schied A. (2002), Convex measures of risk and trading constraints, “Finance and Sto­chastics”, vol. 6, issue 4, pp. 429–447.
Google Scholar

Gneiting T. (2011), Making and evaluating point forecasts, “Journal of the American Statistical Association”, vol. 106(494), pp. 746–762.
Google Scholar

Koenker R., Bassett G. (1978), Regression quantiles, “Econometrica”, vol. 46(1), pp. 33–50.
Google Scholar

Koenker R. (2005), Quantile regression, Cambridge University Press, Cambridge.
Google Scholar

Newey W.K., Powell J.L. (1987), Asymmetric least squares estimation and testing, “Econometrica”, vol. 55(4), pp. 819–847.
Google Scholar

Rockafellar R.T., Uryasev S. (2000), Optimization of conditional value‑at‑risk, “The Journal of Risk”, vol. 2(3), pp. 21–41.
Google Scholar

Rockafellar R.T., Uryasev S. (2002), Conditional Value‑at‑Risk for General Loss Distributions, “Journal of Banking and Finance”, vol. 26, pp. 1443–1471.
Google Scholar

Sobotka F., Schnabel S., Schulze Waltrup L., Eilers P., Kneib T., Kauermann G. (2011), Expectreg: Expectile and quantile regression, R package version 0.25.
Google Scholar

Sobotka F., Kneib T. (2012), Geoadditive expectile regression, “Computational Statistics and Data Analysis”, vol. 56, pp. 755–767.
Google Scholar

Trzpiot G. (2007a), Decomposition of Risk and Quantile Risk Measures, [in:] Dynamiczne Modele Ekonometryczne, “Prace Naukowe Uniwersytetu Mikołaja Kopernika w Toruniu”, pp. 35–42.
Google Scholar

Trzpiot G. (2007b), Regresja kwantylowa a estymacja VaR, “Prace Naukowe Akademii Ekonomicznej we Wrocławiu”, vol. 1176, pp. 465–471.
Google Scholar

Trzpiot G. (2008), Implementacja metodologii regresji kwantylowej w estymacji VaR, “Studia i Prace”, no. 9, Uniwersytet Szczeciński, Szczecin, pp. 316–323.
Google Scholar

Trzpiot G. (2009a), Application weighted VaR in capital allocation, “Polish Journal of Environmental Studies”, vol. 18, no. 5B, pp. 203–208.
Google Scholar

Trzpiot G. (2009b), Estimation methods for quantile regression, “Studia Ekonomiczne. Zeszyty Naukowe Akademii Ekonomicznej w Katowicach”, vol. 53, pp. 81–90.
Google Scholar

Trzpiot G. (2016), Semi‑parametric risk measures, “Studia Ekonomiczne. Zeszyty Naukowe Uni­wersytetu Ekonomicznego w Katowicach”, vol. 288(5), pp. 108–120.
Google Scholar

Trzpiot G. (red.) (2010), Wielowymiarowe metody statystyczne w analizie ryzyka inwestycyjnego, Polskie Wydawnictwo Ekonomiczne, Warszawa.
Google Scholar

Trzpiot G., Krężołek D. (2009), Quantiles ratio risk measures for stable distributions models in finance, “Studia Ekonomiczne. Zeszyty Naukowe Akademii Ekonomicznej w Katowicach”, vol. 53, pp. 109–120.
Google Scholar

Trzpiot G., Majewska J. (2010), Estimation of Value at Risk: Extreme value and robust approaches, “Operation Research and Decisions”, vol. 20, no. 1, pp. 131–143.
Google Scholar

Ziegel J.F. (2016), Coherence and elicitability, “Mathematical Finance”, vol. 26, pp. 901–918.
Google Scholar

Downloads

Published

2018-09-28

How to Cite

Trzpiot, G. (2018). Investment Risk Measurement Based on Quantiles and Expectiles. Acta Universitatis Lodziensis. Folia Oeconomica, 5(338), 213–227. https://doi.org/10.18778/0208-6018.338.13

Issue

Section

Articles

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.