Comparative analysis of sigma-based, quantile-based and time series VaR estimators
DOI:
https://doi.org/10.18778/0208-6018.311.07Keywords:
VaR, VaR estimate, bias of the VaR estimator, variance of the VaR estimator, Monte Carlo experimentAbstract
Since its inception at the end of the XX century, VaR risk measure has gained massive popularity. It is synthetic, easy in interpretation and offers comparability of risk levels reported by different institutions. However, the crucial idea of comparability of reported VaR levels stays in contradiction with the differences in estimation procedures adopted by companies. The issue of the estimation method is subject to the internal company decision and is not regulated by the international banking supervision.
The paper was dedicated to comparative analysis of the prediction errors connected with competing VaR estimation methods. Four methods, among which two stationarity-based – variance-covariance and historical simulation – and two time series methods – GARCH and RiskMetricsTM – were compared through the Monte Carlo study. The analysis was conducted with respect to the method choice, series length and VaR tolerance level.
The study outcomes showed the superiority of the sigma-based method of variance-covariance over the quantile-based historical simulation. Furthermore the comparison of the stationarity-based estimates to the time series results showed that allowing for time-varying parameters in the estimation technique significantly reduces the estimator bias and variance.Downloads
References
Basel Committee on Banking Supervision (1996), Amendment to the capital accord to incorporate market risks, online: http://www.bis.org/publ/bcbs24.pdf (accessed 20.12.2013).
Google Scholar
Basel Committee on Banking Supervision (2005), Amendment to the capital accord to incorporate market risks, online: www.bis.org/publ/bcbs119.pdf (accessed 20.12.2013).
Google Scholar
Basel Committee on Banking Supervision (2005), Basel II: International Convergence of Capital Measurement and Capital Standards: a Revised Framework, online: http://www.bis.org/publ/bcbs118.htm (accessed 20.12.2013).
Google Scholar
Bałamut T. (2002), Metody estymacji Value at Risk, „Materiały i studia NBP” 147, 1-107.
Google Scholar
Berkowitz J., Christoffersen P., Pelletier D. (2011), Evaluating Value-at-Risk Models with Desk-Level Data, Management Science” 12(57), 2213-2227.
Google Scholar
Best P. (2000), Wartość narażona na ryzyko, Dom wydawniczy ABC, Kraków.
Google Scholar
Bollerslev T. (1986), Generalised Autoregressive Heteroscedasticity, „Joumal of Econometrics” 31, 307–327.
Google Scholar
Domański Cz., Pruska K. (2000), Nieklasyczne metody statystyczne, PWE, Warszawa.
Google Scholar
Fiszeder P. (2009), Modele klasy GARCH w empirycznych badaniach finansowych, Wydawnictwo naukowe uniwersytetu Mikołaja Kopernika, Toruń.
Google Scholar
Grabowska A. (2000), Metody kalkulacji wartości narażonej na ryzyko (VaR), „Bank i kredyt” 32(10), 29-36.
Google Scholar
Jajuga K. (2000), Miary ryzyka rynkowego – część trzecia, „Rynek Terminowy” 8, 112-117.
Google Scholar
Jorion P. (1996), Risk2: Measuring the Risk in Value at Risk, „Financial Analysis Journal” 52(6), 47-56.
Google Scholar
Jorion P. (2007), Value at Risk. The New Benchmark for Managing Financial Risk, McGraw-Hill.
Google Scholar
Lopez J. (1999), Methods for Evaluating Value-at-Risk Estimates, „FRBSF Economic Review” 2, 3–17.
Google Scholar
Małecka M. (2013), Metody oceny jakości prognoz ryzyka rynkowego – analiza porównawcza, „Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu” 323, 192-201.
Google Scholar
Piontek K. (2014), Power analysis of some chosen tests of independence of Value-at-Risk violations, International Conference Financial Investments And Insurance, September 17-19, 2014, Wrocław, Poland, online: http://www.inwest.ue.wroc.pl/index.php/en/programme (accessed 25.11.2014).
Google Scholar