Quantile Non‑parametric Additive Models

Authors

DOI:

https://doi.org/10.18778/0208-6018.345.07

Keywords:

Quantile regression, nonparametric regression, additive model

Abstract

Quantile regression allows us to assess different possible impacts of covariates on different quantiles of a response variable. Additive models for quantile functions provide an attractive framework for non‑parametric regression applications focused on functions of the response instead of its central tendency. Total variation smoothing penalties can be used to control the smoothness of additive components. We write down a general approach to estimation and inference for additive models of this type. Quantile regression as a risk measure has been applied in sector portfolio analysis for a data set from the Warsaw Stock Exchange.

Downloads

Download data is not yet available.

References

Breiman L., Friedman J. (1985), Estimating optimal transformations for multiple regression and correlation, “Journal of the American Statistical Association”, vol. 80, no. 391, pp. 580–598.
Google Scholar

Hastie T., Tibshirani R. (1986), Generalized Additive Models, “Statistical Science”, no. 1, pp. 297–310.
Google Scholar

Hastie T., Tibshirani R. (1990), Generalized Additive Models, Chapman Hall, New York.
Google Scholar

https://mfasiolo.github.io/qgam/articles/qgam.html (accessed: 5.11.2018).
Google Scholar

Koenker R., Mizera I. (2004), Penalized triograms: total variation regularization for bivariate smoothing, “Journal of the Royal Statistical Society” (B), no. 66, pp. 145–163.
Google Scholar

Koenker R., Ng P. (2005), A Frisch Newton Algorithm for Sparse Quantile Regression, “Mathematicae Applicatae Sinica”, no. 21, pp. 225–236.
Google Scholar

Koenker R., Ng P., Portnoy S. (1994), Quantile smoothing splines, “Biometrika”, no. 81, pp. 673–680.
Google Scholar

Lindsey J. K. (1997), Applying Generalized Linear Model, Springer, Berlin.
Google Scholar

Wood S. (2006), Generalized Additive Models: An Introduction with R., Chapman Hall, New York.
Google Scholar

Wood S. (2010), Mixed GAM Computation Vehicle with Automatic Smoothness Estimation, https://cran.r-project.org/web/packages/mgcv/mgcv.pdf (accessed: 12.12.2019).
Google Scholar

Wood S. N. (2017). Generalized additive models: an introduction with R, CRC press, New York.
Google Scholar

Wood S. N., Pya N., Säfken B. (2016), Smoothing parameter and model selection for general smooth models, “Journal of the American Statistical Association”, vol. 111(516), pp. 1548–1575.
Google Scholar

Downloads

Published

2019-12-30

How to Cite

Trzpiot, G. (2019). Quantile Non‑parametric Additive Models. Acta Universitatis Lodziensis. Folia Oeconomica, 6(345), 127–139. https://doi.org/10.18778/0208-6018.345.07

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.