Nonlinear Principal Component Analysis for Geographically Weighted Temporal‑spatial Data
DOI:
https://doi.org/10.18778/0208-6018.337.11Keywords:
nonlinear principal component analysis, geographically weighted data, temporal‑spatial dataAbstract
Schölkopf, Smola and Müller (1998) have proposed a nonlinear principal component analysis (NPCA) for fixed vector data. In this paper, we propose an extension of the aforementioned analysis to temporal‑spatial data and weighted temporal‑spatial data. To illustrate the proposed theory, data describing the condition of state of higher education in 16 Polish voivodships in the years 2002–2016 are used.
Downloads
References
Anselin L. (1988), Spatial econometrics: methods and models, Kluwer Academic Publishers, Dordrecht.
Google Scholar
Anselin L. (2010), Thirty years of spatial econometrics, “Regional Science”, no. 89(1), pp. 3–25.
Google Scholar
Casetti E. (1972), Generating Models by the Expansion Method: Applications to Geographical Research, “Geographical Analysis”, no. 4(1), pp. 81–89.
Google Scholar
Charlton M., Brundson C., Demšar U., Harris P., Fotheringham A.S. (2010), Principal components analysis: From global to local, paper presented at the 13th AGILE International Conferenceon Geographic Information Science, Guimarães, Portugal.
Google Scholar
Cliff A.D., Ord J.K. (1973), Spatial autocorrelation, Pion, London.
Google Scholar
Demšar U., Harris P., Brundson C., Fotheringham A.S., McLoone S. (2013), Principal Component Analysis on Spatial Data: An overview, “Annals of the Association of American Geographers”, no. 103(1), pp. 106–128.
Google Scholar
Florek K., Łukaszewicz J., Perkal J., Steinhaus H., Zubrzycki S. (1951), Sur la liaison et la division des points d’un ensemble fini, “Colloquium Mathematicum”, no. 2, pp. 282–285.
Google Scholar
Górecki T., Krzyśko M., Waszak Ł., Wołyński W. (2018), Selected statistical methods of data analysis for multivariate functional data, “Statistical Papers”, no. 59, pp. 153–182.
Google Scholar
Górniak J. (2015), Identification of transport accessibility of Polish cities based on their transport infrastructures, “Studia Ekonomiczne. Zeszyty Naukowe UE w Katowicach”, no. 249, pp. 145–154.
Google Scholar
Kruskal J.B. (1956), On the shortest spanning subtree of a graph and the traveling salesman problem, “Proceedings of the American Mathematical Society”, no. 7(1), pp. 48–50.
Google Scholar
Mercer J. (1909), Functions of positive and negative type and their connection with the theory of integral equations, “Philosophical Transactions of the Royal Society of London”, Series A, no. 209, pp. 415–446.
Google Scholar
R Core Team (2017), R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, https://www.R-project.org/ [accessed: 8.05.2018].
Google Scholar
Schölkopf B., Smola A., Müller K.R. (1998), Nonlinear component analysis as a kernel eigenvalue problem, “Neural Computation”, no. 10, pp. 1299–1319.
Google Scholar
Swamy P.A.V. (1971), Statistical inference in random coefficient regression models, Springer, Berlin.
Google Scholar
Tobler W.R. (1970), A computer movie simulating urban growth in the Detroit region, “Economic Geography”, no. 46(2), pp. 234–248.
Google Scholar
Walesiak M. (2014), Data normalization in multivariate data analysis. An overview and properties, “Przegląd Statystyczny”, no. 61(4), pp. 363–372.
Google Scholar