Paliwa alternatywne jako zrównoważona innowacja we flocie pojazdów UE–27: diagnoza i perspektywy rozwoju

Autor

DOI:

https://doi.org/10.18778/1508-2008.27.36

Słowa kluczowe:

paliwa alternatywne, zrównoważone innowacje, zrównoważony rozwój, flota samochodów osobowych, UE–27, środowisko

Abstrakt

Rozszerzenie floty pojazdów napędzanych paliwami alternatywnymi stanowi ważny instrument realizacji celów klimatycznych Unii Europejskiej. Celem badania jest scharakteryzowanie i ocena, w sposób porównawczy, obecnego etapu popularyzacji samochodów osobowych napędzanych paliwami alternatywnymi w państwach członkowskich UE. Punktem centralnym badania jest eksploracja podobieństw i różnic obserwowanych pomiędzy krajami unijnymi w odniesieniu do aktualnej struktury floty pojazdów napędzanych paliwami alternatywnymi oraz tendencji rozwojowych w tym zakresie. W tym kontekście zaobserwować można wyraźny schemat „dwóch prędkości” – równolegle do szybkiego rozpowszechniania pojazdów elektrycznych w krajach skandynawskich i zachodnioeuropejskich wielkość i struktura floty pojazdów napędzanych alternatywnie pozostała w dużej mierze niezmieniona w krajach Europy Środkowej, z wciąż dominującą rolą utrwalonego na tych rynkach skroplonego gazu płynnego (LPG). Wyniki badania podkreślają potrzebę dywersyfikacji paliw alternatywnych, które należy wprowadzać stopniowo, zgodnie z klasyfikacją zaproponowaną w dyrektywie 2014/94/UE Parlamentu Europejskiego i Rady.

Pobrania

Brak dostępnych danych do wyświetlenia.

Bibliografia

Adomako, S., Nguyen, N.P. (2023), Co‑innovation behavior and sustainable innovation in competitive environments, “Sustainable Development”, 31 (3), pp. 1735–1747, https://doi.org/10.1002/sd.2479
Google Scholar DOI: https://doi.org/10.1002/sd.2479

Alternative Fuels Data Center (n.d.), Alternative Fuels and Advanced Vehicles, https://afdc.energy.gov/fuels/ (accessed: 16.09.2023).
Google Scholar

Alternative Fuels Data Center (n.d.), Ethanol Fuel Basics, https://afdc.energy.gov/fuels/ethanol_fuel_basics.html (accessed: 16.09.2023).
Google Scholar

Alternative Fuels Data Center (n.d.), Hydrogen, https://afdc.energy.gov/fuels/hydrogen.html (accessed: 16.09.2023).
Google Scholar

Alternative Fuels Data Center (n.d.), Natural Gas, https://afdc.energy.gov/fuels/natural_gas.html (accessed: 16.09.2023).
Google Scholar

Alternative Fuels Data Center (n.d.), Propane Benefits and Considerations, https://afdc.energy.gov/fuels/propane_benefits.html (accessed: 16.09.2023).
Google Scholar

Basiago, A.D. (1995), Methods of defining ‘sustainability’, “Sustainable Development”, 3 (3), pp. 109–119, https://doi.org/10.1002/sd.3460030302
Google Scholar DOI: https://doi.org/10.1002/sd.3460030302

Breitkreuz, K., Menne, A., Kraft, A. (2014), New process for sustainable fuels and chemicals from bio‑based alcohols and acetone, “Biofuels, Bioproducts and Biorefining”, 8 (4), pp. 504–515, https://doi.org/10.1002/bbb.1484
Google Scholar DOI: https://doi.org/10.1002/bbb.1484

Cillo, V., Petruzzelli, A.M., Ardito, L., Del Giudice, M. (2019), Understanding sustainable innovation: A systematic literature review, “Corporate Social Responsibility and Environmental Management”, 26 (5), pp. 1012–1025, https://doi.org/10.1002/csr.1783
Google Scholar DOI: https://doi.org/10.1002/csr.1783

DesJardins, J. (2015), Sustainability, [in:] Wiley Encyclopedia of Management, https://doi.org/10.1002/9781118785317.weom020212
Google Scholar DOI: https://doi.org/10.1002/9781118785317.weom020212

DHL (n.d.), Alternative fuels: What the future holds?, https://www.dhl.com/global‑en/delivered/sustainability/future‑of‑alternative‑fuels.html (accessed: 15.09.2023).
Google Scholar

European Alternative Fuels Observatory (n.d.), About the European Alternative Fuels Observatory, https://alternative‑fuels‑observatory.ec.europa.eu/general‑information/about‑european‑alternative‑fuels‑observatory (accessed: 20.09.2023).
Google Scholar

European Alternative Fuels Observatory (n.d.), Alternative fuels, https://alternative‑fuels‑observatory.ec.europa.eu/general‑information/alternative‑fuels (accessed: 5.10.2023).
Google Scholar

European Alternative Fuels Observatory (2023), Road, https://alternative‑fuels‑observatory.ec.europa.eu/transport‑mode/road (accessed: 11.09.2023).
Google Scholar

European Commission (2021), Proposal for a Regulation of the European Parliament and of the Council on the deployment of alternative fuels infrastructure, and repealing Directive 2014/94/EU of the European Parliament and of the Council, https://eur‑lex.europa.eu/resource.html?uri=cellar:dbb134db‑e575-11eb‑a1a5-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed: 18.09.2023).
Google Scholar

European Council for an Energy Efficient Economy (2023), Effort Sharing Regulation, https://www.eceee.org/policy‑areas/product‑policy/effort‑sharing‑regulation/ (accessed: 3.10.2023).
Google Scholar

European Environment Agency (2020), EC, 2020, “2050 long‑term strategy”, https://www.eea.europa.eu/policy‑documents/ec-2020-2050‑long‑term‑strategy (accessed: 20.09.2023).
Google Scholar

Eurostat (2023), Passenger cars, by type of motor energy [ROAD_EQS_CARPDA], https://ec.europa.eu/eurostat/databrowser/view/road_eqs_carpda/default/table?lang=en (accessed: 30.09.2023).
Google Scholar

EVgo (n.d.), Types of Electric Vehicles, https://www.evgo.com/ev‑drivers/types‑of‑evs/ (accessed: 15.09.2023).
Google Scholar

ExxonMobil (n.d.), EMRD renewable diesel process technology, https://www.exxonmobilchemical.com/en/catalysts‑and‑technology‑licensing/emrd?utm_source=google&utm_medium=cpc&utm_campaign=cl_emrd_none&ds_k=renewable+diesel&gclsrc=aw.ds&&ppc_keyword=renewable%20diesel&gclid=EAIaIQobChMIkLuw1ceugQMVfkZBAh13cgScEAAYASAAEgII1_D_BwE (accessed: 16.09.2023).
Google Scholar

Farghali, M., Osman, A.I., Chen, Z., Abdelhaleem, A., Ihara, I., Mohamed, I.M.A., Yap, P.‑S., Rooney, D.W. (2023), Social, environmental, and economic consequences of integrating renewable energies in the electricity sector: a review, “Environmental Chemistry Letters”, 21, pp. 1381–1418, https://doi.org/10.1007/s10311-023-01587-1
Google Scholar DOI: https://doi.org/10.1007/s10311-023-01587-1

Huang, D., Zhou, H., Lin, L. (2012), Biodiesel: an Alternative to Conventional Fuel, “Energy Procedia”, 16 (C), pp. 1874–1885, https://doi.org/10.1016/j.egypro.2012.01.287
Google Scholar DOI: https://doi.org/10.1016/j.egypro.2012.01.287

IDTechEx (n.d.), Sustainable Alternative Fuels 2021–2031, https://www.idtechex.com/en/research‑report/sustainable‑alternative‑fuels-2021-2031/799 (accessed: 15.09.2023).
Google Scholar

International Energy Agency (2018), Nordic EV Outlook 2018. Insights from leaders in electric mobility, https://doi.org/10.1787/9789264293229‑en
Google Scholar

Kumar, M. (2020), Social, Economic, and Environmental Impacts of Renewable Energy Resources, [in:] K.E. Okedu, A. Tahour, A.G. Aissaou (eds.), Wind Solar Hybrid Renewable Energy System, IntechOpen, pp. 227–238, https://doi.org/10.5772/intechopen.89494
Google Scholar DOI: https://doi.org/10.5772/intechopen.89494

Liu, F., Su, C.W., Qin, M., Umar, M. (2023), Is renewable energy a path towards sustainable development?, “Sustainable Development”, 31 (5), pp. 3869–3880, https://doi.org/10.1002/sd.2631
Google Scholar DOI: https://doi.org/10.1002/sd.2631

Luo, Z., Hu, Y., Xu, H., Gao, D., Li, W. (2020), Cost‑Economic Analysis of Hydrogen for China’s Fuel Cell Transportation Field, “Energies”, 13 (24), 6522, https://doi.org/10.3390/en13246522
Google Scholar DOI: https://doi.org/10.3390/en13246522

Martin, A.J., Larrazabal, G.O., Perez‑Ramirez, J. (2015), Towards sustainable fuels and chemicals through the electrochemical reduction of CO2: lessons from water electrolysis, “Green Chemistry”, 12, pp. 5114–5130, https://doi.org/10.1039/C5GC01893E
Google Scholar DOI: https://doi.org/10.1039/C5GC01893E

Nasiri, M., Saunila, M., Rantala, T., Ukko, J. (2022), Sustainable innovation among small businesses: The role of digital orientation, the external environment, and company characteristics, “Sustainable Development”, 30 (4), pp. 703–712, https://doi.org/10.1002/sd.2267
Google Scholar DOI: https://doi.org/10.1002/sd.2267

No, S.‑Y. (2019), Parffinic Biofuels: HVO, BTL Diesel, and Farnesane, [in:] S.‑Y. No, Application of Liquid Biofuels to Internal Combustion Engines, Springer Nature Singapore Pte Ltd., Singapore, pp. 147–179, https://doi.org/10.1007/978-981-13-6737-3_4
Google Scholar DOI: https://doi.org/10.1007/978-981-13-6737-3_4

Thomas, G., Parks, G. (2006), Potential Roles of Ammonia in a Hydrogen Economy. A Study of Issues Related to the Use Ammonia for On‑Board Vehicular Hydrogen Storage, U.S. Department of Energy, https://www.energy.gov/eere/fuelcells/articles/potential‑roles‑ammonia‑hydrogen‑economy (accessed: 19.09.2023).
Google Scholar

United Nations Economic Commission for Europe (2023), Consolidated Resolution on the Construction of Vehicles (R.E.3). Revision 7, https://unece.org/sites/default/files/2023-12/ECE_TRANS_WP.29_78_Rev.7e.pdf (accessed: 20.10.2023).
Google Scholar

World LPG Association (WLPG), Liquid Gas Europe (2022), Autogas Incentive Policies, https://www.liquidgaseurope.eu/wp‑content/uploads/2024/05/Autogas_Incentive_Policies_2022.pdf (accessed: 1.06.2024).
Google Scholar

Opublikowane

2024-12-19

Jak cytować

Pangsy‑Kania, S., Biegańska, J., & Flouros, F. (2024). Paliwa alternatywne jako zrównoważona innowacja we flocie pojazdów UE–27: diagnoza i perspektywy rozwoju. Comparative Economic Research. Central and Eastern Europe, 27(4), 173–194. https://doi.org/10.18778/1508-2008.27.36

Numer

Dział

Artykuły