Paliwa alternatywne jako zrównoważona innowacja we flocie pojazdów UE–27: diagnoza i perspektywy rozwoju
DOI:
https://doi.org/10.18778/1508-2008.27.36Słowa kluczowe:
paliwa alternatywne, zrównoważone innowacje, zrównoważony rozwój, flota samochodów osobowych, UE–27, środowiskoAbstrakt
Rozszerzenie floty pojazdów napędzanych paliwami alternatywnymi stanowi ważny instrument realizacji celów klimatycznych Unii Europejskiej. Celem badania jest scharakteryzowanie i ocena, w sposób porównawczy, obecnego etapu popularyzacji samochodów osobowych napędzanych paliwami alternatywnymi w państwach członkowskich UE. Punktem centralnym badania jest eksploracja podobieństw i różnic obserwowanych pomiędzy krajami unijnymi w odniesieniu do aktualnej struktury floty pojazdów napędzanych paliwami alternatywnymi oraz tendencji rozwojowych w tym zakresie. W tym kontekście zaobserwować można wyraźny schemat „dwóch prędkości” – równolegle do szybkiego rozpowszechniania pojazdów elektrycznych w krajach skandynawskich i zachodnioeuropejskich wielkość i struktura floty pojazdów napędzanych alternatywnie pozostała w dużej mierze niezmieniona w krajach Europy Środkowej, z wciąż dominującą rolą utrwalonego na tych rynkach skroplonego gazu płynnego (LPG). Wyniki badania podkreślają potrzebę dywersyfikacji paliw alternatywnych, które należy wprowadzać stopniowo, zgodnie z klasyfikacją zaproponowaną w dyrektywie 2014/94/UE Parlamentu Europejskiego i Rady.
Pobrania
Bibliografia
Adomako, S., Nguyen, N.P. (2023), Co‑innovation behavior and sustainable innovation in competitive environments, “Sustainable Development”, 31 (3), pp. 1735–1747, https://doi.org/10.1002/sd.2479
Google Scholar
DOI: https://doi.org/10.1002/sd.2479
Alternative Fuels Data Center (n.d.), Alternative Fuels and Advanced Vehicles, https://afdc.energy.gov/fuels/ (accessed: 16.09.2023).
Google Scholar
Alternative Fuels Data Center (n.d.), Ethanol Fuel Basics, https://afdc.energy.gov/fuels/ethanol_fuel_basics.html (accessed: 16.09.2023).
Google Scholar
Alternative Fuels Data Center (n.d.), Hydrogen, https://afdc.energy.gov/fuels/hydrogen.html (accessed: 16.09.2023).
Google Scholar
Alternative Fuels Data Center (n.d.), Natural Gas, https://afdc.energy.gov/fuels/natural_gas.html (accessed: 16.09.2023).
Google Scholar
Alternative Fuels Data Center (n.d.), Propane Benefits and Considerations, https://afdc.energy.gov/fuels/propane_benefits.html (accessed: 16.09.2023).
Google Scholar
Basiago, A.D. (1995), Methods of defining ‘sustainability’, “Sustainable Development”, 3 (3), pp. 109–119, https://doi.org/10.1002/sd.3460030302
Google Scholar
DOI: https://doi.org/10.1002/sd.3460030302
Breitkreuz, K., Menne, A., Kraft, A. (2014), New process for sustainable fuels and chemicals from bio‑based alcohols and acetone, “Biofuels, Bioproducts and Biorefining”, 8 (4), pp. 504–515, https://doi.org/10.1002/bbb.1484
Google Scholar
DOI: https://doi.org/10.1002/bbb.1484
Cillo, V., Petruzzelli, A.M., Ardito, L., Del Giudice, M. (2019), Understanding sustainable innovation: A systematic literature review, “Corporate Social Responsibility and Environmental Management”, 26 (5), pp. 1012–1025, https://doi.org/10.1002/csr.1783
Google Scholar
DOI: https://doi.org/10.1002/csr.1783
DesJardins, J. (2015), Sustainability, [in:] Wiley Encyclopedia of Management, https://doi.org/10.1002/9781118785317.weom020212
Google Scholar
DOI: https://doi.org/10.1002/9781118785317.weom020212
DHL (n.d.), Alternative fuels: What the future holds?, https://www.dhl.com/global‑en/delivered/sustainability/future‑of‑alternative‑fuels.html (accessed: 15.09.2023).
Google Scholar
European Alternative Fuels Observatory (n.d.), About the European Alternative Fuels Observatory, https://alternative‑fuels‑observatory.ec.europa.eu/general‑information/about‑european‑alternative‑fuels‑observatory (accessed: 20.09.2023).
Google Scholar
European Alternative Fuels Observatory (n.d.), Alternative fuels, https://alternative‑fuels‑observatory.ec.europa.eu/general‑information/alternative‑fuels (accessed: 5.10.2023).
Google Scholar
European Alternative Fuels Observatory (2023), Road, https://alternative‑fuels‑observatory.ec.europa.eu/transport‑mode/road (accessed: 11.09.2023).
Google Scholar
European Commission (2021), Proposal for a Regulation of the European Parliament and of the Council on the deployment of alternative fuels infrastructure, and repealing Directive 2014/94/EU of the European Parliament and of the Council, https://eur‑lex.europa.eu/resource.html?uri=cellar:dbb134db‑e575-11eb‑a1a5-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed: 18.09.2023).
Google Scholar
European Council for an Energy Efficient Economy (2023), Effort Sharing Regulation, https://www.eceee.org/policy‑areas/product‑policy/effort‑sharing‑regulation/ (accessed: 3.10.2023).
Google Scholar
European Environment Agency (2020), EC, 2020, “2050 long‑term strategy”, https://www.eea.europa.eu/policy‑documents/ec-2020-2050‑long‑term‑strategy (accessed: 20.09.2023).
Google Scholar
Eurostat (2023), Passenger cars, by type of motor energy [ROAD_EQS_CARPDA], https://ec.europa.eu/eurostat/databrowser/view/road_eqs_carpda/default/table?lang=en (accessed: 30.09.2023).
Google Scholar
EVgo (n.d.), Types of Electric Vehicles, https://www.evgo.com/ev‑drivers/types‑of‑evs/ (accessed: 15.09.2023).
Google Scholar
ExxonMobil (n.d.), EMRD renewable diesel process technology, https://www.exxonmobilchemical.com/en/catalysts‑and‑technology‑licensing/emrd?utm_source=google&utm_medium=cpc&utm_campaign=cl_emrd_none&ds_k=renewable+diesel&gclsrc=aw.ds&&ppc_keyword=renewable%20diesel&gclid=EAIaIQobChMIkLuw1ceugQMVfkZBAh13cgScEAAYASAAEgII1_D_BwE (accessed: 16.09.2023).
Google Scholar
Farghali, M., Osman, A.I., Chen, Z., Abdelhaleem, A., Ihara, I., Mohamed, I.M.A., Yap, P.‑S., Rooney, D.W. (2023), Social, environmental, and economic consequences of integrating renewable energies in the electricity sector: a review, “Environmental Chemistry Letters”, 21, pp. 1381–1418, https://doi.org/10.1007/s10311-023-01587-1
Google Scholar
DOI: https://doi.org/10.1007/s10311-023-01587-1
Huang, D., Zhou, H., Lin, L. (2012), Biodiesel: an Alternative to Conventional Fuel, “Energy Procedia”, 16 (C), pp. 1874–1885, https://doi.org/10.1016/j.egypro.2012.01.287
Google Scholar
DOI: https://doi.org/10.1016/j.egypro.2012.01.287
IDTechEx (n.d.), Sustainable Alternative Fuels 2021–2031, https://www.idtechex.com/en/research‑report/sustainable‑alternative‑fuels-2021-2031/799 (accessed: 15.09.2023).
Google Scholar
International Energy Agency (2018), Nordic EV Outlook 2018. Insights from leaders in electric mobility, https://doi.org/10.1787/9789264293229‑en
Google Scholar
Kumar, M. (2020), Social, Economic, and Environmental Impacts of Renewable Energy Resources, [in:] K.E. Okedu, A. Tahour, A.G. Aissaou (eds.), Wind Solar Hybrid Renewable Energy System, IntechOpen, pp. 227–238, https://doi.org/10.5772/intechopen.89494
Google Scholar
DOI: https://doi.org/10.5772/intechopen.89494
Liu, F., Su, C.W., Qin, M., Umar, M. (2023), Is renewable energy a path towards sustainable development?, “Sustainable Development”, 31 (5), pp. 3869–3880, https://doi.org/10.1002/sd.2631
Google Scholar
DOI: https://doi.org/10.1002/sd.2631
Luo, Z., Hu, Y., Xu, H., Gao, D., Li, W. (2020), Cost‑Economic Analysis of Hydrogen for China’s Fuel Cell Transportation Field, “Energies”, 13 (24), 6522, https://doi.org/10.3390/en13246522
Google Scholar
DOI: https://doi.org/10.3390/en13246522
Martin, A.J., Larrazabal, G.O., Perez‑Ramirez, J. (2015), Towards sustainable fuels and chemicals through the electrochemical reduction of CO2: lessons from water electrolysis, “Green Chemistry”, 12, pp. 5114–5130, https://doi.org/10.1039/C5GC01893E
Google Scholar
DOI: https://doi.org/10.1039/C5GC01893E
Nasiri, M., Saunila, M., Rantala, T., Ukko, J. (2022), Sustainable innovation among small businesses: The role of digital orientation, the external environment, and company characteristics, “Sustainable Development”, 30 (4), pp. 703–712, https://doi.org/10.1002/sd.2267
Google Scholar
DOI: https://doi.org/10.1002/sd.2267
No, S.‑Y. (2019), Parffinic Biofuels: HVO, BTL Diesel, and Farnesane, [in:] S.‑Y. No, Application of Liquid Biofuels to Internal Combustion Engines, Springer Nature Singapore Pte Ltd., Singapore, pp. 147–179, https://doi.org/10.1007/978-981-13-6737-3_4
Google Scholar
DOI: https://doi.org/10.1007/978-981-13-6737-3_4
Thomas, G., Parks, G. (2006), Potential Roles of Ammonia in a Hydrogen Economy. A Study of Issues Related to the Use Ammonia for On‑Board Vehicular Hydrogen Storage, U.S. Department of Energy, https://www.energy.gov/eere/fuelcells/articles/potential‑roles‑ammonia‑hydrogen‑economy (accessed: 19.09.2023).
Google Scholar
United Nations Economic Commission for Europe (2023), Consolidated Resolution on the Construction of Vehicles (R.E.3). Revision 7, https://unece.org/sites/default/files/2023-12/ECE_TRANS_WP.29_78_Rev.7e.pdf (accessed: 20.10.2023).
Google Scholar
World LPG Association (WLPG), Liquid Gas Europe (2022), Autogas Incentive Policies, https://www.liquidgaseurope.eu/wp‑content/uploads/2024/05/Autogas_Incentive_Policies_2022.pdf (accessed: 1.06.2024).
Google Scholar
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.