Complex genesis of N-channel eskers illustrated with the example of an esker near Tosie (east-central Poland)

Authors

DOI:

https://doi.org/10.18778/1427-9711.20.02

Keywords:

Esker, subglacial tunnel, open crevasse, glaciofluvial deposits, Saalian, Poland

Abstract

The study presents the problem of complex genesis of eskers formed in N-channels on the example of an esker located near Tosie in east-central Poland. The lithofacies analysis revealed a high diversity of structural and textural characteristics of sediments in this form. The esker consists of three sedimentation units. Coarse sediments of the esker core were deposited in the subenvironment of a subglacial tunnel, as an effect of bedforms migration under hydrostatic pressure. Opening of the tunnel resulted in the forming of an open crevasse, in which the cover of the esker core sediments was accumulated. These deposits recorded a significant variability of flow energy and sedimentation mechanisms, which indicates a strong influence of the ice-sheet ablation dynamics. During the final deglaciation stage, a part of the esker was covered with diamicton. Numerous soft-sediment deformation structures were identified within the esker. The sediments were dislocated vertically to the elevation of more than 8 metres. They constitute the record of buried dead-ice masses melting in the esker core sediments. Melting of the masses resulted in vertical displacement of sediments and formation of "the dead-ice structure". The complexity of esker genesis is characteristic of postglacial areas in Poland, where most eskers were formed in subglacial N-channels. Numerous research results confirm a considerably more frequent occurrence of the facies sequence of subglacial tunnel and open crevasse in eskers formed in N-channels than R-channels. This is indicated by a much greater dissimilarity of processes during different stages of esker formation on soft bed and solid substratum.

Downloads

Download data is not yet available.

References

Ahokangas, E., Mäkinen, J., 2014. Sedimentology of an ice lobe margin esker with implications for the deglacial dynamics of the Finnish Lake District lobe trunk. Boreas 43, 90–106 https://doi.org/10.1111/bor.12023
Google Scholar DOI: https://doi.org/10.1111/bor.12023

Ashmore, P.E., 1991. How do gravel rivers braid? Canadian Journal of Earth Sciences 28, 326–341 https://doi.org/10.1139/e91-030
Google Scholar DOI: https://doi.org/10.1139/e91-030

Baker, V.R., 1978. Large-scale erosional and deposition features in the Channeled Scabland, [in:] Baker, V.R., Nummedal, D. (Eds.), The Channeled Scabland, 81–115.
Google Scholar

Banerjee, I., McDonald, B.C., 1975. Nature of esker sedimentation, [in:] Jopling, A.V., McDonald, B.C. (Eds.), Glaciofluvial and Glaciolacustrine Sedimentation: Society of Economic Paleontologists and Mineralogists Special Publication 23, 132–154 https://doi.org/10.2110/pec.75.23.0132
Google Scholar DOI: https://doi.org/10.2110/pec.75.23.0132

Bennett, M.R., Glasser, N.F., 2010. Glacial geology: Ice sheets and landforms. Second edition. Oxford, Wiley.
Google Scholar

Brennand, T.A., 1994. Macroforms, large bedforms and rythmic sedimentary sequences in subglacial eskers, south-central Ontario: Implications for esker genesis and meltwater regime. Sedimentary Geology 91, 9–55 https://doi.org/10.1016/0037-0738(94)90122-8
Google Scholar DOI: https://doi.org/10.1016/0037-0738(94)90122-8

Brennand, T.A., 2000. Deglacial meltwater drainage and glaciodynamics: Inferences from Laurentide eskers, Canada. Geomorphology 32, 263–293.
Google Scholar DOI: https://doi.org/10.1016/S0169-555X(99)00100-2

Brennand, T.A., Shaw, J., 1996. The Harricana glaciofluvial complex, Abitibi region, Quebec: Its genesis and implications for meltwater regime and ice-sheet dynamics. Sedimentary Geology 102, 221–262 https://doi.org/10.1016/0037-0738(95)00069-0
Google Scholar DOI: https://doi.org/10.1016/0037-0738(95)00069-0

Buraczyński, J., Superson, J., 1992. Ozy i kemy Kotliny Hrubieszowskiej (Wyż. Lubelska), Kwartalnik Geologiczny 36 (3), 361–374.
Google Scholar

Burke, M.J., Woodward, J., Russell, A.J., Fleisher, P.J., Bailey, P.K., 2008. Controls on the sedimentary architecture of a single event englacial esker: Skeiðarárjökull, Iceland. Quaternary Science Reviews 27, 1829–1847.
Google Scholar DOI: https://doi.org/10.1016/j.quascirev.2008.06.012

Burke, M.J., Woodward, J., Russell, A.J., Fleisher, P.J., 2009. Structural controls on englacial esker sedimentation: Skeiðarárjökull, Iceland. Annals of Glaciology 50, 85–92.
Google Scholar DOI: https://doi.org/10.3189/172756409789097568

Burke, M.J., Woodward, J., Russell, A.J., Fleisher, P.J., Bailey, P.K., 2010. The sedimentary architecture of outburst flood eskers: A comparison of groundpenetrating radar data from Bering Glacier, Alaska and Skeiðarárjökull, Iceland. Geological Society of America Bulletin 122, 1637–1645.
Google Scholar DOI: https://doi.org/10.1130/B30008.1

Burke, M.J., Brennand, T.A., Sjogren, D.B., 2015. The role of sediment supply in esker formation and ice tunnel evolution. Quaternary Science Reviews 115, 50–77.
Google Scholar DOI: https://doi.org/10.1016/j.quascirev.2015.02.017

Carling, P.A., 1996. Morphology, sedimentology and palaeohydraulic significance of large gravel dunes, Altai Mts, Siberia. Sedimentology 43, 647–664 https://doi.org/10.1111/j.1365-3091.1996.tb02184.x
Google Scholar DOI: https://doi.org/10.1111/j.1365-3091.1996.tb02184.x

Cheel, R.J., Rust, B.R., 1982. Coarse-grained facies of glaciomarine deposits near Ottawa, Canada, [in:] Davidson-Arnott, R., Nickling, W., Fahey, B.D. (Eds.), Research in Glacial, Glaciofluvial and Glaciolacustrine Systems. GeoBooks, Norwich, 279–295.
Google Scholar

Clark, P.U., Walder, J.S., 1994. Subglacial drainage, eskers, and deforming beds beneath the Laurentide and Eurasian ice sheets. Geological Society of America Bulletin 106, 304–314.
Google Scholar DOI: https://doi.org/10.1130/0016-7606(1994)106<0304:SDEADB>2.3.CO;2

Costa, J.E., 1983. Paleohydraulic reconstruction of flash-flood peaks from boulder deposits in the Colorado Front Range. Geological Society of America Bulletin 94, 986–1004 https://doi.org/10.1130/0016-7606(1983)94<986:PROFPF>2.0.CO;2
Google Scholar DOI: https://doi.org/10.1130/0016-7606(1983)94<986:PROFPF>2.0.CO;2

De Geer, G.J., 1897. Om rullstensåsarnas bildningssät. Geol. Fören. Stockholm Förhand 19, 366–388.
Google Scholar DOI: https://doi.org/10.1080/11035899709448614

Delaney, C., 2001. Esker formation and the nature of deglaciation: The Ballymohon Esker, Central Ireland. North West Geography 1 (2), 23–33.
Google Scholar

Dewald, N., Lewington, E.L.M., Livingstone, S.J., Clark, C.D., Storrar, R.D., 2021. Distribution, characteristics and formation of esker enlargements. Geomorphology 392, 107919 https://doi.org/10.1016/j.geomorph.2021.107919
Google Scholar DOI: https://doi.org/10.1016/j.geomorph.2021.107919

Evans, D.J.A., Phillips, E.R., Hiemstra, J.F., Auton, C.A., 2006. Subglacial till: Formation, sedimentary characteristics and classification. Earth-Science Reviews 78 (1–2), 115–176 https://doi.org/10.1016/j.earscirev.2006.04.001
Google Scholar DOI: https://doi.org/10.1016/j.earscirev.2006.04.001

Fard, A.M., 2002. Large dead-ice depressions in flat-topped eskers: Evidence ofa Preboreal jökulhlaup in the Stockholm area, Sweden. Global and Planetary Change 35 (3–4), 273–295 https://doi.org/10.1016/S0921-8181(02)00131-5
Google Scholar DOI: https://doi.org/10.1016/S0921-8181(02)00131-5

Fard, A.M., Gruszka, B., 2007. Subglacial conditions in a branching Saalian esker in northcentral Poland. Sedimentary Geology 193, 33–46 https://doi.org/10.1016/j.sedgeo.2006.03.029
Google Scholar DOI: https://doi.org/10.1016/j.sedgeo.2006.03.029

Frydrych, M., 2016. Structural and textural response to dynamics of fluvioglacial processes of the Rzymsko esker sediments, Central Poland. Geology, Geophysics & Environment 42 (4), 411–428.
Google Scholar DOI: https://doi.org/10.7494/geol.2016.42.4.411

Frydrych, M., 2020. Formation of selected eskers and related forms of the old glacial area of the Polish Lowland in the light of geomorphological and sedimentological Research. PhD thesis, University of Lodz.
Google Scholar

Gorrell, G., Shaw, J., 1991. Deposition in an esker, bead and fan complex, Lanark, Ontario, Canada. Sedimentary Geology 72, 285–314 https://doi.org/10.1016/0037-0738(91)90016-7
Google Scholar DOI: https://doi.org/10.1016/0037-0738(91)90016-7

Graham, D.J., Reid, I., Rice, S.P., 2005. Automated Sizing of Coarse-Grained Sediments: Image-Processing Procedures. Mathematical Geology 37, 1–28.
Google Scholar DOI: https://doi.org/10.1007/s11004-005-8745-x

Gregory, J.W., 1921. The Irish Eskers. Philosophical Transactions of the Royal Society of London. Series B, Containing Papers of a Biological Character 210, 115–151.
Google Scholar DOI: https://doi.org/10.1098/rstb.1921.0004

Gruszka, B., Van Loon, A.J., 2011. Genesis of a giant gravity-induced depression (gravifossum) in the Enköping esker, S. Sweden. Sedimentary Geology 235, 3–4, 304–313 https://doi.org/10.1016/j.sedgeo.2010.10.004
Google Scholar DOI: https://doi.org/10.1016/j.sedgeo.2010.10.004

Henderson, P.J., 1988. Sedimentation in an esker system influenced by bedrock topography near Kingston, Ontario. Canadian Journal of Earth Sciences 25, 987–999.
Google Scholar DOI: https://doi.org/10.1139/e88-098

Hooke, R. LeB., 1984. On the role of mechanical energy in maintaining subglacial water conduits at atmospheric pressure. Journal of Glaciology 30, 180–187.
Google Scholar DOI: https://doi.org/10.3189/S0022143000005918

Huddart, D., Bennett, M.R., Glasser, N.F. 1999. Morphology and sedimentology of a high-arctic esker system: Vegbreen, Svalbard. Boreas 28, 253–273 https://doi.org/10.1111/j.1502-3885.1999.tb00219.x
Google Scholar DOI: https://doi.org/10.1080/030094899750044350

Hummel, D., 1874. Om Rullstenbildningar. K. Svenska Vetenskaps-Akademiens Förhandlingar 2 (11), 1–36.
Google Scholar

Jaksa, Z., Rdzany Z., 2002. Sedymentologiczny zapis dynamiki deglacjacji Wysoczyzny Rawskiej na przykładzie Wału Rylska. Acta Universitatis Nicolai Copernici, Geografia, XXXII, Nauki Matematyczno-Przyrodnicze 109, 169–181.
Google Scholar

Lewington, E.L., Livingstone, S.J., Clark, C.D., Sole, A.J., Storrar, D.R., 2020a. Large-scale integrated subglacial drainage around the former Keewatin Ice Divide, Canada reveals interaction between distributed and channelized systems. The Cryosphere Discussion [In press] https://doi.org/10.5194/tc-2020-10
Google Scholar DOI: https://doi.org/10.5194/egusphere-egu2020-5861

Lewington, E.L., Livingstone, S.J., Clark, C.D., Sole, A.J., Storrar, R., 2020b. A model for interaction between conduits and surrounding hydraulically connected distributed drainage based on geomorphological evidence from Keewatin. The Cryosphere 14, 2949–2976 https://doi.org/10.5194/tc-14-2949-2020
Google Scholar DOI: https://doi.org/10.5194/tc-14-2949-2020

Livingstone, S.J., Lewington, E.L., Clark, C.D., Storrar, D.R., Sole, A.J., McMartin, I., Dewald, N., Ng, Felix, 2020. A quasi-annual record of time-transgressive esker formation: Implications for ice-sheet reconstruction and subglacial hydrology. The Cryosphere 14, 1989–2004.
Google Scholar DOI: https://doi.org/10.5194/tc-14-1989-2020

Lundqvist, J., 1997. Structure and rhythmic pattern of glaciofluvial deposits north of Lake Vänern, south-central Sweden. Boreas 26, 127–140 https://doi.org/10.1111/j.1365-3091.1975.tb00290.x
Google Scholar DOI: https://doi.org/10.1111/j.1502-3885.1997.tb00659.x

Maizels, J.K., 1989. Sedimentology, paleoflow dynamics and flood history of jökulhlaup deposits: Paleohydrology of Holocene sediment sequences in southern Iceland sandur deposits. Journal of Sedimentary Petrology 59, 204–223.
Google Scholar DOI: https://doi.org/10.1306/212F8F4E-2B24-11D7-8648000102C1865D

Maizels, J.K., 1997. Jökulhlaup deposits in proglacial areas. Quaternary Science Reviews 16, 793–819 https://doi.org/10.1016/S0277-3791(97)00023-1
Google Scholar DOI: https://doi.org/10.1016/S0277-3791(97)00023-1

Marks, L., Dzierżek, J., Janiszewski, R., Kaczorowski, J., Lindner, L., Majecka, A., Makos, M., Szymanek, M., Tołoczko-Pasek, A., Woronko, B., 2016. Quaternary stratigraphy and paleogeography of Poland. Acta Geologica Polonica 66 (3), 403–427.
Google Scholar DOI: https://doi.org/10.1515/agp-2016-0018

Mäkinen, J., 2003. Time-transgressive deposits of repeated depositional sequences within interlobate glaciofluvial (esker) sediments in Köyliö, SW Finland. Sedimentology 50, 327–360.
Google Scholar DOI: https://doi.org/10.1046/j.1365-3091.2003.00557.x

Miall, A.D., 1977. A review of the braided-river depositional environment. Earth-Science Reviews 13, 1–62 https://doi.org/10.1016/0012-8252(77)90055-1
Google Scholar DOI: https://doi.org/10.1016/0012-8252(77)90055-1

Michalska, Z., 1969. Problems of the origin of eskers based on the examples from Central Poland. Geographia Polonica 16, 105–119.
Google Scholar

Nemec, W., Steel, R.J., 1984. Alluvial and coastal conglomerates: Their significant features and some comments on gravelly mass-flow deposits, [in:] Koster, E.H., Steel, R.J. (Eds.), Sedimentology of Gravels and Conglomerates. Canadian Society of Petroleum Geologists, Memoir 10, 1–31.
Google Scholar

Nye, J.F., 1973. Water at the bed of the glacier: Symposium on the Hydrology of Glaciers. International Association of Sciencific Hydrology, Publications, Cambridge 95, 189–194.
Google Scholar

Nye, J.F., 1976. Water flow in glaciers: Jökulhlaups, tunnels and veins. Journal of Glaciology 17, 179–207 https://doi.org/10.3189/S002214300001354X
Google Scholar DOI: https://doi.org/10.1017/S002214300001354X

Pisarska-Jamroży, M., Zieliński, T., 2012. Specific erosional and depositional processes in a Pleistocene subglacial tunnel in the Wielkopolska region, Poland. Geografiska Annaler, Series A, Physical Geography 94, 429–443 https://doi.org/10.1111/j.1468-0459.2012.00466.x
Google Scholar DOI: https://doi.org/10.1111/j.1468-0459.2012.00466.x

Ringrose, S., 1982. Depositional processes in the development of eskers in Manitoba, [in:] Davidson-Arnott, R., Nickling, W., Fahey, B.D. (Eds.), Research in glacial, glacio-fluvial and glaciolacustrine systems. Proceedings of the 6th Guelph Symposium on Geomorphology (1980). Geo Books, Norwich, 117–137.
Google Scholar

Roman, M., 2016. Sukcesja osadowa i etapy formowania ozu gostynińskiego, Równina Kutnowska, centralna Polska. Annales Universitatis Mariae Curie-Sklodowska, Sectio B – Geographia, Geologia, Mineralogia et Petrographia 71 (1), 9–27.
Google Scholar DOI: https://doi.org/10.17951/b.2016.71.1.9

Röthlisberger, H., 1972. Water pressure in intra and subglacial channels. Journal of Glaciology 11, 177–203.
Google Scholar DOI: https://doi.org/10.3189/S0022143000022188

Russell, A. J., Knudsen, Ó., 1999. An ice-contact rhythmite (turbidite) succession deposited during the November 1996 catastrophic outburst flood (jokulhlaup), Skeidararjokull, Iceland. Sedimentary Geology 127 (1–2), 1–10 https://doi.org/10.1016/S0037-0738(99)00024-X
Google Scholar DOI: https://doi.org/10.1016/S0037-0738(99)00024-X

Russell, A.J., Knudsen, Ó., 2002. The effect of glacier-outburst flood flow dynamic on ice-contact deposits: November 1996 jökulhlaup, Skeidarársandur, Iceland, [in:] Flood and megaflood processes and deposits: Recent and ancient examples. International Association of Sedimentologists, Special Publication 32, 67–83 https://doi.org/10.1002/9781444304299.ch5
Google Scholar DOI: https://doi.org/10.1002/9781444304299.ch5

Russell, A.J., Knudsen, Ó., Fay, H., Marren, P.M., Heinz, J., Tronicke, J., 2001. Morphology and sedimentology of a giant supraglacial, ice-walled, jökulhlaup channel, Skeidarárjökull, Iceland: Implications for esker genesis. Global and Planetary Change 28, 193–216 https://doi.org/10.1016/S0921-8181(00)00073-4
Google Scholar DOI: https://doi.org/10.1016/S0921-8181(00)00073-4

Salamon, T., 2009. Subglacjalne pochodzenie przełomowych dolin zachodniej części progu środkowotriasowego i ciągu pagórów okolic Gogolina. Przegląd Geologiczny 57 (3), 243–251.
Google Scholar

Saunderson, H.C., 1975. Sedimentology of the Brampton esker and its associated deposits: An empirical test of theory, [in:] Jopling, A.V., McDonald, B.C. (Eds.), Glaciofluvial and glaciolacustrine sedimentation. Society of Economic Paleontologists and Mineralogists, Special Publication 23, 155–176 https://doi.org/10.2110/pec.75.23.0155
Google Scholar DOI: https://doi.org/10.2110/pec.75.23.0155

Saunderson, H.C., 1977. The sliding bed facies in esker sands and gravels: A criterion for full-pipe (tunnel) flow? Sedimentology 24, 623–638.
Google Scholar DOI: https://doi.org/10.1111/j.1365-3091.1977.tb00261.x

Sharpe, D.R, Lesemann, J.E., Knight, R.D., Kjarsgaard, B.A., 2021. Regional stagnation of the western Keewatin ice sheet and the significance of melt water corridors and eskers, anorthern Canada. Canadian Journal of Earth Sciences 58(10), 1005–1026.
Google Scholar DOI: https://doi.org/10.1139/cjes-2020-0136

Shaw, J., 1972. Sedimentation in the ice-contact environment, with examples from Shropshire (England). Sedimentology 18, 23–62 https://doi.org/10.1111/j.1365-3091.1972.tb00002.x
Google Scholar DOI: https://doi.org/10.1111/j.1365-3091.1972.tb00002.x

Shreve, R.L., 1985. Esker characteristics in term of glacial physics, Katahdin esker system, Maine. Geological Society of America Bulletin 96, 639–646.
Google Scholar DOI: https://doi.org/10.1130/0016-7606(1985)96<639:ECITOG>2.0.CO;2

Shulmeister, J., 1989. Flood deposits in the Tweet esker (southern Ontario, Canada). Sedimentary Geology 65, 153–163.
Google Scholar DOI: https://doi.org/10.1016/0037-0738(89)90012-2

Smith, G.A., 1986. Coarse-grained and nonmarine volcaniclastic sediment: Terminology and depositional processes. Geological Society of America Bulletin 97, 1–10 https://doi.org/10.1130/0016-7606(1986)97<1:CNVSTA>2.0.CO;2
Google Scholar DOI: https://doi.org/10.1130/0016-7606(1986)97<1:CNVSTA>2.0.CO;2

Storrar, R.D., Evans, D.J.A., Stokes, C.R., Ewertowski, M., 2015. Controls on the location, morphology and evolution of complex esker systems at decadal timescales, Breiðamerkurjökull, southeast Iceland. Earth Surface Processes and Landforms 40, 1421–1438.
Google Scholar DOI: https://doi.org/10.1002/esp.3725

Storrar, R.D., Stokes, C.R., Evans, D.J.A., 2014a. Increased channelization of subglacial drainage during deglaciation of the Laurentide Ice Sheet. Geology 42, 239–242.
Google Scholar DOI: https://doi.org/10.1130/G35092.1

Storrar, R.D., Stokes, C.R., Evans, D.J.A., 2014b. Morphometry and pattern of a large sample (>20,000) of Canadian eskers and implications for subglacial drainage beneath ice sheets. Quaternary Science Reviews 105, 1–25.
Google Scholar DOI: https://doi.org/10.1016/j.quascirev.2014.09.013

Van Loon, A.J., 2009. Soft-sediment deformation structures in siliciclastic sediments: An overview. Geologos 15 (1), 3–55 https://doi.org/10.1016/j.sedgeo.2013.02.001
Google Scholar DOI: https://doi.org/10.1016/j.sedgeo.2013.02.001

Williams, G.E., 1983. Palaeohydrological methods and some examples from Swedish fluvial environments: I. Cobble and boulder deposits. Geografiska Annaler 65A, 227–243 https://doi.org/10.2307/520941
Google Scholar DOI: https://doi.org/10.1080/04353676.1983.11880088

Wrotek, K., 1998. Szczegółowa mapa geologiczna Polski 1: 50 000, Arkusz Kosów Lacki (454). Państwowy Instytut Geologiczny, Warszawa.
Google Scholar

Wrotek, K., 2002. Objaśnienia do Szczegółowej mapy geologicznej Polski 1:50 000, Arkusz Kosów Lacki (454). Państwowy Instytut Geologiczny, Warszawa, 1–36.
Google Scholar

Wysota, W., 1990. Geneza ozu nowodworskiego w świetle analizy strukturalnej jego osadów. Acta Universitatis Nicolai Copernici, Geografia 22, Toruń, 3–22.
Google Scholar

Zieliński, T., Pisarska-Jamroży, M., 2012. Jakie cechy litologiczne osadów warto kodować, a jakie nie? Przegląd Geologiczny 60 (7), 387–397.
Google Scholar

Downloads

Published

2021-12-30

How to Cite

Frydrych, M. (2021). Complex genesis of N-channel eskers illustrated with the example of an esker near Tosie (east-central Poland). Acta Universitatis Lodziensis. Folia Geographica Physica, 20(20), 13–25. https://doi.org/10.18778/1427-9711.20.02

Issue

Section

Articles