Rastrowe zestawy danych GEBCO i ETOPO1 dla kartowania opartego na GMT Kartowanie rowów Hikurangi, Puysegur i Hjort, Nowa Zelandia
DOI:
https://doi.org/10.18778/1427-9711.19.01Słowa kluczowe:
GMT, rów Hikurangi, rów Puysegur, rów Hjort, modelowanie geomorfologiczne, kartografia, wizualizacja, analiza danych, batymetria, Ocean SpokojnyAbstrakt
Studium poświęcone jest analizie porównawczej rzeźby dna trzech rowów oceanicznych: Hikurangi (HkT), Puysegur (PT) i Hjort (HjT), położonych w pobliżu Nowej Zelandii na południowym Pacyfiku. HjT charakteryzuje się skośną strefą subdukcji. Unikalna sytuacja geotektoniczna regionu polega na rozdzieleniu dwóch stref subdukcji: północnej (Hikurangi) i południowej (Puysegur), strefą kolizji kontynentalnej wzdłuż uskoku Alpine Fault na Wyspie Południowej. Subdukcja na południe od Wyspy Południowej zachodzi pod dużym kątem w kierunku południowo-wschodnim (PT i HjT), podczas gdy w strefie północnej (Hikurangi) odbywa się na północny zachód. W konsekwencji Wyspa Południowa jest ujęta w swego rodzaju „nożyce subdukcyjne”. Metodologia oparta na GMT (The Generic Mapping Tools) posłużyła do skartowania, wykreślenia i modelowania obszaru. Kartowanie obejmuje wizualizację danych geofizycznych oraz pozycji tektonicznej i geologicznej rowów, opartą na sekwencyjnym użyciu modułów GMT. Dane obejmują GEBCO, ETOPO1, EGM96. Porównawcza korekcja histogramu siatek topograficznych (wyrównana, znormalizowana, kwadratowa) została wykonana przez moduł „grdhisteq”, zaś zautomatyzowane przekroje – przez moduł „grdtrack”.
Analiza wykazała , że rów Hjort ma symetryczną formę z porównywalnymi nachyleniami zarówno na zachodnich, jak i wschodnich zboczach. Rów Hikurangi ma podobne do koryta płaskie szerokie dno, a stok od strony zachodniej (przylegający do Wyspy Północnej) jest nachylony pod większym kątem od stoku wschodniego. Rów Puysegur ma asymetryczną V-kształtną formę ze stromo nachylonym zboczem wschodnim i łagodniejszym zachodnim. Rów HkT jest relatywnie płytki < 2500 m, PT osiąga głębokość <-6000 m. Największą głębokość (> 6000 m) stwierdzono dla rowu Hjort. Rzeźba dna w otoczeniu HjT jest najbardziej zróżnicowana, a w przypadku położonego bardziej na północ PT zaznacza się wyraźna dysproporcja pomiędzy łagodnym oceanicznym zboczem na zachodzie i stromym zboczem grzbietu Puysegur (północny odcinek Łuku Macquarie) na wschodniej flance rowu. Rozkład danych batymetrycznych dla HkT jest stosunkowo zrównoważony dla głębokości od 600 m do 2600 m. PT ma bimodalny rozkład danych z 2 pikami: 1) 4250 do 4500 m (18%); 2) 2250 do 3000 m, < 7,5%. Druga koncentracja danych odpowiada łukowi Macquarie. Rozkład danych dla HjT ma klasyczny kształt dzwonu z wyraźnym ekstremum odpowiadającym głębokościom 3250 do 3500 m. Asymetria zaprezentowanych rowów oceanicznych jest uwarunkowana przez procesy geotektoniczne.
Pobrania
Bibliografia
Akan, Ç., McWilliams, J.C., Uchiyama, Y., 2020. Topographic and coastline influences on surf Eddies. Ocean Modelling 147, 101565. http://dx.doi.org/10.1016/j.ocemod.2019.101565
Google Scholar
DOI: https://doi.org/10.1016/j.ocemod.2019.101565
Amante, C., Eakins, B.W., 2009. Etopo1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA technical memorandum. http://dx.doi.org/10.7289/V5C8276M
Google Scholar
Ballance, P.F., 1976. Evolution of the upper Cenozoic magmatic arc and plate boundary in northern New Zealand. Earth and Planetary Science Letters 28, 356–370. http://dx.doi.org/10.1016/0012-821X(76)90197-7
Google Scholar
DOI: https://doi.org/10.1016/0012-821X(76)90197-7
Barker, D.H.N., Sutherland, R., Henrys, S., Bannister, S., 2009. Geometry of the Hikurangi subduction thrust and upper plate, North Island, New Zealand. Geochemistry Geophysics Geosystems 10, 1–23. (Q02007). http://dx.doi.org/10.1029/2008GC002153
Google Scholar
DOI: https://doi.org/10.1029/2008GC002153
Barnes, P.M., Lamarche, G., Bialas, J., Henrys, S., Pecher, I., Netzeband, G.L., Crutchley, G., 2010. Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand. Marine Geology 272, 26–48.
Google Scholar
DOI: https://doi.org/10.1016/j.margeo.2009.03.012
Barnes, P.M., Mercier de Lepinay, B., 1997. Rates and mechanics of rapid frontal accretion along the very obliquely convergent southern Hikurangi margin, New Zealand. Journal of Geophysical Research 102, 24931–24952. http://dx.doi.org/10.1029/97JB01384
Google Scholar
DOI: https://doi.org/10.1029/97JB01384
Beavan, J., Haines, J., 2001. Contemporary horizontal velocity and strain rate fields of the Pacific-Australian plate boundary zone through New Zealand. Journal of Geophysical Research: Solid Earth 106, 741–770. http://dx.doi.org/10.1029/2000JB900302
Google Scholar
DOI: https://doi.org/10.1029/2000JB900302
Becker, J.J., Sandwell, D.T., Smith, W.H.F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S.-H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Von Rosenberg, J., Wallace, G., Weatherall, P., 2009. Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS. Marine Geodesy 32 (4), 355–371.
Google Scholar
DOI: https://doi.org/10.1080/01490410903297766
Berryman, K., Ota, Y., Miyauchi, T., Hull, A., Clark, K., Ishibashi, K., Litchfield, N., 2011. Holocene paleoseismic history of upper-plate faults in the Southern Hikurangi subduction margin, New Zealand, deduced from marine terrace records. Bulletin of the Seismological Society of America 101, 2064–2087.
Google Scholar
DOI: https://doi.org/10.1785/0120100282
Berryman, K.R., 1993. Distribution, age, and deformation of Late Pleistocene marine terraces at Mahia peninsula, Hikurangi subduction margin, New Zealand. Tectonics 12, 1365–1379. http://dx.doi.org/10.1029/93TC01543
Google Scholar
DOI: https://doi.org/10.1029/93TC01543
Brothers, D.S., Miller, N.C., Barrie, J.V., Haeussler, P.J., Greene, H.G., Andrews, B.D., Zielke, O., Watt, J., Dartnell, P., 2020. Plate boundary localization, slip-rates and rupture segmentation of the Queen Charlotte Fault based on submarine tectonic geomorphology. Earth and Planetary Science Letters 530, 115882. http://dx.doi.org/10.1016/j.epsl.2019.115882
Google Scholar
DOI: https://doi.org/10.1016/j.epsl.2019.115882
Bursztyn, N., Pederson, J.L., Tressler, C., Mackley, R.D., Mitchell, K.J., 2015. Rock strength along a fluvial transect of the Colorado Plateau – quantifying a fundamental control on geomorphology. Earth and Planetary Science Letters 429, 90–100. http://dx.doi.org/10.1016/j.epsl.2015.07.042
Google Scholar
DOI: https://doi.org/10.1016/j.epsl.2015.07.042
Cazenave, A., Ruff, L., 1985. Seasat geoid anomalies and the macquarie ridge complex. Food and agriculture organization of the united nations.
Google Scholar
Clark, K., Howarth, J., Litchfield, N., Cochran, U., Turnbull, J., Dowling, L., Wolf, F., 2019. Geological evidence for past large earthquakes and tsunamis along the Hikurangi subduction margin, New Zealand. Marine Geology 412, 139–172.
Google Scholar
DOI: https://doi.org/10.1016/j.margeo.2019.03.004
Dahlin, T., Svensson, M., Lindh, P., 1999. DC Resistivity and SASW for Validation of Efficiency in Soil Stabilisation Prior to Road Construction. Procs. EEGS’99, Budapest, Hungary, 6–9 September 1999, Ls5, 1–3. http://dx.doi.org/10.3997/2214-4609.201406466
Google Scholar
DOI: https://doi.org/10.3997/2214-4609.201406466
Gales, J.A., Larter, R.D., Mitchell, N.C., Dowdeswell, J.A., 2013. Geomorphic signature of Antarctic submarine gullies: Implications for continental slope processes. Marine Geology 337, 112–124. http://dx.doi.org/10.1016/j.margeo.2013.02.003
Google Scholar
DOI: https://doi.org/10.1016/j.margeo.2013.02.003
Gauger, S., Kuhn, G., Gohl, K., Feigl, T., Lemenkova, P., Hillenbrand, C., 2007. Swath-bathymetric mapping. Reports on Polar and Marine Research 557, 38–45.
Google Scholar
GEBCO Compilation Group 2020. GEBCO 2020 Grid. http://dx.doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9
Google Scholar
Greinert, J., Lewis, K.B., Bialas, J., Pecher, I.A., Rowden, A., Bowden, D.A., Linke, P., 2010. Methane seepage along the Hikurangi Margin, New Zealand: Overview of studies in 2006 and 2007 and new evidence from visual, bathymetric and hydroacoustic investigations. Marine Geology 272, 6–25.
Google Scholar
DOI: https://doi.org/10.1016/j.margeo.2010.01.017
Harris, P.T., Barrie, J.V., Conway, K.W., Greene, H.G., 2014. Hanging canyons of Haida Gwaii, British Columbia, Canada: Fault-control on submarine canyon geomorphology along active continental margins. Deep Sea Research Part II: Topical Studies in Oceanography 104, 83–92. http://dx.doi.org/10.1016/j.dsr2.2013.06.017
Google Scholar
DOI: https://doi.org/10.1016/j.dsr2.2013.06.017
Hodgson, D.A., Graham, A.G.C., Griffiths, H.J., Roberts, S.J., Cofaigh, C.Ó., Bentley, M.J., Evans, D.J.A., 2014. Glacial history of sub-Antarctic South Georgia based on the submarine geomorphology of its fjords. Quaternary Science Reviews 89, 129–147. http://dx.doi.org/10.1016/j.quascirev.2013.12.005
Google Scholar
DOI: https://doi.org/10.1016/j.quascirev.2013.12.005
Jiao, R., Seward, D., Little, T.A., Kohn, B.P., 2015. Unroofing of fore-arc ranges along the Hikurangi Margin, New Zealand: Constraints from low-temperature thermochronology. Tectonophysics 656, 39–51.
Google Scholar
DOI: https://doi.org/10.1016/j.tecto.2015.06.004
Klaucke, I., Weinrebe, W., Petersen, C.J., Bowden, D., 2010. Temporal variability of gas seeps offshore New Zealand: Multi-frequency geoacoustic imaging of the Wairarapa area, Hikurangi margin. Marine Geology 272, 49–58. http://dx.doi.org/10.1016/j.margeo.2009.02.009
Google Scholar
DOI: https://doi.org/10.1016/j.margeo.2009.02.009
Klaučo, M., Gregorova, B., Stankov, U., Markovic, V., Lemenkova, P., 2013a. Determination of ecological significance based on geo-statistical assessment: A case study from the Slovak Natura 2000 protected area. Central European Journal of Geosciences 5, 28–42.
Google Scholar
DOI: https://doi.org/10.2478/s13533-012-0120-0
Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P., 2013b. Interpretation of Landscape Values, Typology and Quality Using Methods of Spatial Metrics for Ecological Planning. 54th International Conference Environmental & Climate Technologies, October 14, 2013. Riga, Latvia.
Google Scholar
Klaučo, M., Gregorová, B., Stankov, U., Marković, V., Lemenkova, P., 2017. Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environmental Engineering and Management Journal 2 (16), 449–458.
Google Scholar
DOI: https://doi.org/10.30638/eemj.2017.045
Krabbenhoeft, A., Bialas, J., Klaucke, I., Crutchley, G., Papenberg, C., Netzeband, G.L., 2013. Patterns of subsurface fluid-flow at cold seeps: The Hikurangi Margin, offshore New Zealand. Marine and Petroleum Geology 39, 59–73.
Google Scholar
DOI: https://doi.org/10.1016/j.marpetgeo.2012.09.008
Krabbenhoeft, A., Netzeband, G.L., Bialas, J., Papenberg, C., 2010. Episodic methane concentrations at seep sites on the upper slope Opouawe Bank, southern Hikurangi Margin, New Zealand. Marine Geology 272, 71–78. http://dx.doi.org/10.1016/j.margeo.2009.08.001
Google Scholar
DOI: https://doi.org/10.1016/j.margeo.2009.08.001
Kuhn, G., Hass, C., Kober, M., Petitat, M., Feigl, T., Hillenbrand, C.D., Kruger, S., Forwick, M., Gauger, S., Lemenkova, P., 2006. The response of quaternary climatic cycles in the South-East Pacific: Development of the opal belt and dynamics behavior of the West Antarctic ice sheet. Expeditionsprogramm Nr. 75 ANT XXIII/4.
Google Scholar
Lamarche, G., Collot, J.-Y., Wood, R.A., Sosson, M., Sutherland, R., Delteil, J., 1997. The Oligocene-Miocene Pacific-Australian plate boundary, South of New Zealand: Evolution from oceanic spreading to strike-slip faulting. Earth and Planetary Science Letters 148, 129–139.
Google Scholar
DOI: https://doi.org/10.1016/S0012-821X(97)00026-5
Lamarche, G., Lebrun, J.-F., 2000. Transition from strike-slip faulting to oblique subduction: Active tectonics at the Puysegur Margin, South New Zealand. Tectonophysics 316, 67–89.
Google Scholar
DOI: https://doi.org/10.1016/S0040-1951(99)00232-2
Lemenkova, P., 2011. Seagrass mapping and monitoring along the coasts of Crete, Greece. M.Sc. Thesis, University of Twente.
Google Scholar
Lemenkova, P., Promper, C., Glade, T., 2012. Economic Assessment of Landslide Risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria, [In:] Eberhardt, E. et al. (eds.), Protecting society through improved understanding. 11th International Symposium on Landslides & the 2nd North American Symposium on Landslides & Engineered Slopes (NASL), June 2–8, 2012. Banff, AB, Canada, 279–285.
Google Scholar
Lemenkova, P., 2018a. Factor Analysis by R Programming to Assess Variability Among Environmental Determinants of the Mariana Trench. Turkish Journal of Maritime and Marine Sciences 4, 146–155.
Google Scholar
DOI: https://doi.org/10.31223/OSF.IO/ES9KA
Lemenkova, P., 2018b. R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. Journal of Marine Technology and Environment 2, 35–42.
Google Scholar
Lemenkova, P., 2019a. GMT Based Comparative Analysis and Geo-morphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica 14, 39–48.
Google Scholar
DOI: https://doi.org/10.21163/GT_2019.142.04
Lemenkova, P., 2019b. Topographic surface modelling using raster grid datasets by GMT: Example of the Kuril-Kamchatka Trench, Pacific Ocean. Reports on Geodesy and Geoinformatics 108, 9–22.
Google Scholar
DOI: https://doi.org/10.2478/rgg-2019-0008
Lemenkova, P., 2019c. Geophysical Modelling of the Middle America Trench using GMT. Annals of Valahia University of Targoviste. Geographical Series 19 (2), 73–94.
Google Scholar
Lemenkova, P., 2019d. Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geodesy and Cartography 45, 57–84.
Google Scholar
DOI: https://doi.org/10.3846/gac.2019.3785
Lemenkova, P., 2019e. Testing Linear Regressions by StatsModel Library of Python for Oceanological Data Interpretation. Aquatic Sciences and Engineering 34, 51–60. http://dx.doi.org/10.26650/ASE2019547010
Google Scholar
DOI: https://doi.org/10.26650/ASE2019547010
Lemenkova, P., 2019f. Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Polish Cartographical Review 51 (4), 181–194.
Google Scholar
DOI: https://doi.org/10.2478/pcr-2019-0015
Lemenkova, P., 2019g. Automatic Data Processing for Visualising Yap and Palau Trenches by Generic Mapping Tools. Cartographic Letters 27 (2), 72–89.
Google Scholar
Lemenkova, P., 2019h. AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis. GeoScience Engineering 65 (4), 1–22.
Google Scholar
DOI: https://doi.org/10.35180/gse-2019-0020
Lemenkova, P., 2020. Variations in the bathymetry and bottom morphology of the Izu-Bonin Trench modelled by GMT. Bulletin of Geography. Physical Geography Series 18 (1), 41–60. http://dx.doi.org/10.2478/bgeo-2020-0004
Google Scholar
DOI: https://doi.org/10.2478/bgeo-2020-0004
Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Chinn, D.S., Cox, C.M., Klosko, S.M., Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp, R.H., Olson, T.R., 1998. NASA/TP-1998-206861: The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96, NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771 USA.
Google Scholar
Lindh, P., 2004. Compaction- and strength properties of stabilised and unstabilised fine-grained tills. Lund University. PhD Thesis.
Google Scholar
Lodolo, E., Coren, F., 1994. The Westernmost Pacific Antarctic plate boundary in the vicinity of the Macquarie triple junction. Terra Antarctica 1, 158–161.
Google Scholar
Martin, R.A., Nesbitt, E.A., Campbell, K.A., 2010. The effects of anaerobic methane oxidation on benthic foraminiferal assemblages and stable isotopes on the Hikurangi Margin of eastern New Zealand. Marine Geology 272, 270–284.
Google Scholar
DOI: https://doi.org/10.1016/j.margeo.2009.03.024
McCalpin, J.P., Gutierrez, F., Bruhn, R.L., Guerrero, J., Pavlis, T.L., Lucha, P., 2020. Tectonic geomorphology and late Quaternary deformation on the Ragged Mountain fault, Yakutat microplate, South Coastal Alaska. Geomorphology 351, 106875. http://dx.doi.org/10.1016/j.geomorph.2019.106875
Google Scholar
DOI: https://doi.org/10.1016/j.geomorph.2019.106875
Meckel, T.A., Coffin, M.F., Mosher, S., Symonds, P., Bernardel, G., Mann, P., 2003. Underthrusting at the Hjort Trench, Australian-Pacific plate boundary: Incipient subduction? Geochemistry, Geophysics, Geosystems 4, 1099. http://dx.doi.org/10.1029/2002GC000498
Google Scholar
DOI: https://doi.org/10.1029/2002GC000498
Melhuish, A., Sutherland, R., Davey, F.J., Lamarche, G., 1999. Crustal structure and neotectonics of the Puysegur oblique subduction zone, New Zealand. Tectonophysics 313, 335–362.
Google Scholar
DOI: https://doi.org/10.1016/S0040-1951(99)00212-7
Neal, C.R., Mahoney, J.J., Kroenke, L.W., Duncan, R.A., Petterson, M.G., 1997. The Ontong Java Plateau. Geophysical Monograph Series 100, 183–216.
Google Scholar
DOI: https://doi.org/10.1029/GM100p0183
Nicol, A., Wallace, L.M., 2007. Temporal stability of deformation rates: Comparison of geological and geodetic observations, Hikurangi subduction margin, New Zealand. Earth and Planetary Science Letters 258, 397–413. http://dx.doi.org/10.1016/j.epsl.2007.03.039
Google Scholar
DOI: https://doi.org/10.1016/j.epsl.2007.03.039
Nitsche, F.O., Jacobs, S.S., Larter, R.D., Gohl, K., 2007. Bathymetry 393 of the Amundsen Sea continental shelf: Implications for geology, oceanography, and glaciology. Geochemistry, Geophysics, Geosystems, 395 8. http://dx.doi.org/10.1029/2007GC001694
Google Scholar
DOI: https://doi.org/10.1029/2007GC001694
Niyazi, Y., Eruteya, O.E., Omosanya, K.O., Harishidayat, D., Johansen, S.E., Waldmann, N., 2018. Seismic geomorphology of submarine channel-belt complexes in the Pliocene of the Levant Basin, offshore central Israel. Marine Geology 403, 123–138. http://dx.doi.org/10.1016/j.margeo.2018.05.007
Google Scholar
DOI: https://doi.org/10.1016/j.margeo.2018.05.007
O'Brien, P.E., Post, A.L., Edwards, S., Martin, T., Caburlotto, A., Donda, F., Leitchenkov, G., Romeo, R., Duffy, M., Evangelinos, D., Holder, L., Leventer, A., López-Quirós, A., Opdyke, B.N., Armand, L.K., 2020. Continental slope and rise geomorphology seaward of the Totten Glacier, T East Antarctica (112°E–122°E). Marine Geology 427, 106221.
Google Scholar
DOI: https://doi.org/10.1016/j.margeo.2020.106221
Olson, C.J., Becker, J.J., Sandwell, D.T., 2014. A new global bathymetry map at 15 arcsecond resolution for resolving seafloor fabric: SRTM15_PLUS, AGU Fall Meeting Abstracts 2014.
Google Scholar
Pecher, I.P., Henrys, S.A., Wood, W.T., Kukowski, N., Crutchley, G.J., Fohrmann, M., Faure, K., 2010. Focussed fluid flow on the Hikurangi Margin, New Zealand – Evidence from possible local upwarping of the base of gas hydrate stability. Marine Geology 272, 99–113. http://dx.doi.org/10.1016/j.margeo.2009.10.006
Google Scholar
DOI: https://doi.org/10.1016/j.margeo.2009.10.006
Pysklywec, R.N., Ellis, S.M., Gorman, A.R., 2010. Three-dimensional mantle lithosphere deformation at collisional plate boundaries: A subduction scissor across the South Island of New Zealand. Earth and Planetary Science Letters 289, 334–346.
Google Scholar
DOI: https://doi.org/10.1016/j.epsl.2009.11.022
Reyes, A.G., Christenson, B.W., Faure, K., 2010. Sources of solutes and heat in low-enthalpy mineral waters and their relation to tectonic setting, New Zealand. Journal of Volcanology and Geothermal Research 192, 117–141. http://dx.doi.org/10.1016/j.jvolgeores.2010.02.015
Google Scholar
DOI: https://doi.org/10.1016/j.jvolgeores.2010.02.015
Reyners, M., 2013. The central role of the Hikurangi Plateau in the Cenozoic tectonics of New Zealand and the Southwest Pacific. Earth and Planetary Science Letters 361, 460–468.
Google Scholar
DOI: https://doi.org/10.1016/j.epsl.2012.11.010
Reyners, M., Eberhart-Phillips, D., Bannister, S., 2011. Tracking repeated subduction of the Hikurangi Plateau beneath New Zealand. Earth and Planetary Science Letters 311, 165–171.
Google Scholar
DOI: https://doi.org/10.1016/j.epsl.2011.09.011
Sandwell, D.T., Müller, R.D., Smith, W.H.F., Garcia, E., Francis, R., 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346, 6205, 65–67. http://dx.doi.org/10.1126/science.1258213
Google Scholar
DOI: https://doi.org/10.1126/science.1258213
Schenke, H.W., Lemenkova, P., 2008. Zur Frage der Meeresboden--Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten 81, 16–21.
Google Scholar
Serra, C.S., Martínez-Loriente, S., Gràcia, E., Urgeles, R., Vizcaino, A., Perea, H., Bartolome, R., Pallàs, R., Lo Iacono, C., Diez, S., Dañobe-itia, J., Terrinha, P., Zitellini, N. 2020. Tectonic evolution, geomorpho-logy and influence of bottom currents along a large submarine canyon system: The São Vicente Canyon (SW Iberian margin). Marine Geology 426, 106219. http://dx.doi.org/10.1016/j.margeo.2020.106219
Google Scholar
DOI: https://doi.org/10.1016/j.margeo.2020.106219
Suetova, I., Ushakova, L., Lemenkova, P., 2005. Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources 4, 138–142.
Google Scholar
Sutherland, R., Barnes, P., Uruski, C., 2006. Miocene-recent deformation, surface elevation, and volcanic intrusion of the overriding plate during subduction initiation, offshore southern Fiordland, Puysegur Margin, Southwest New Zealand. New Zealand Journal of Geology and Geophysics 49, 131–149.
Google Scholar
DOI: https://doi.org/10.1080/00288306.2006.9515154
Trevisan, A., Venema, V., Kollet, S., Rahman, M., 2020. The topographic control on land surface energy fluxes: A statistical approach to bias correction. Journal of Hydrology 584, 124669. http://dx.doi.org/10.1016/j.jhydrol.2020.124669
Google Scholar
DOI: https://doi.org/10.1016/j.jhydrol.2020.124669
Wallace, L., Reyners, M., Cochran, U., Bannister, S., Barnes, P., Berryman, K., Power, W.L., 2009. Characterizing the seismogenic zone of a major plate boundary subduction thrust: The Hikurangi Margin. Geoche-mistry. Geophysics. Geosystems 10.
Google Scholar
DOI: https://doi.org/10.1029/2009GC002610
Wang, H., Crutchley, G.J., Stern, T., 2017. Gas hydrate formation in compressional, extensional and un-faulted structural settings – Examples from New Zealand’s Hikurangi margin. Marine and Petroleum Geology 88, 69–80.
Google Scholar
DOI: https://doi.org/10.1016/j.marpetgeo.2017.08.001
Wells, D., Monahan, D., 2002. IHO S44 Standards for Hydrographic surveys and the variety of requirements for bathymetric data. The Hydrographic Journal, 104, 9–16
Google Scholar
Wessel, P., Smith, W.H.F., 2018. The Generic Mapping Tools. Version 4.5.18 Technical Reference and Cookbook. Computer software manual. U.S.A.
Google Scholar
Pobrania
Opublikowane
Jak cytować
Numer
Dział
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.