WYBRANE ZAGADNIENIA MODELOWANIA ROZKŁADU DOCHODU ORAZ POMIARU NIERÓWNOŚCI DOCHODOWYCH ROZPATRYWANE Z PUNKTU WIDZENIA STATYSTYKI ODPORNEJ

Autor

  • Daniel Kosiorowski Uniwersytet Ekonomiczny w Krakowie, Wydział Zarządzania.

Słowa kluczowe:

Rozkład dochodów, nierówności dochodowe, estymacja odporna.

Abstrakt

Rozważania dotyczące rozkładów dochodów oraz nierówności dochodowych bez wątpienia należą o tzw. jądra ekonomii teoretycznej. Rozważania tego typu pojawiają się w debacie publicznej dotyczącej polityki podatkowej, polityki transferów społecznych, w teoriach tworzenia kapitału intelektualnego bądź w typowaniu czynników rozwoju regionalnego.

Warto zauważyć, że wyniki badań statystycznych prowadzonych, aby dostarczyć argumentów za bądź przeciw hipotezom stawianym w debatach ekonomistów zależą krytycznie od własności metod statystycznych wykorzystywanych w tych badaniach. Mamy tutaj przykładowo na uwadze, jakość estymatora gęstości w przypadku brakujących danych, jakość wielowymiarowej miary skośności w przypadku odstępstwa od normalności populacji, bądź jakość algorytmu zmniejszającego wymiar zagadnienia statystycznego w przypadku występowania obserwacji odstających. W sytuacji, gdy w badaniach tego typu uwzględniamy dodatkowo pewien wymiar przestrzenny bądź społecznoekonomiczny – przeprowadzenie dobrej jakości wnioskowania statystycznego wydaje się stanowić szczególnym wyzwanie.

W niniejszej pracy w krytyczny sposób analizujemy trudności związane z wnioskowaniem statystycznym dotyczącym wybranych modeli dochodu i wybranych miar nierówności dochodowych. Z perspektywy statystyki odpornej badamy m.in. powszechnie wykorzystywane estymatory parametrów modeli Pareto, Pearsona, D'Addario oraz Daguma. Proponujemy odporne i nieparametryczne alternatywy dla popularnych miar nierówności dochodowych oraz pokazujemy jak zredukować liczbę predyktorów dla agregatów dochodowych w odporny sposób. Zwracamy szczególną uwagę na przestrzenny wymiar naszych badań. Rozważania teoretyczne ilustrujemy m.in. wykorzystując dane empiryczne pochodzące z Eurostatu i Minnesota Population Center (IMPUS).

Pobrania

Brak dostępnych danych do wyświetlenia.

Bibliografia

Brazauskas V., Serfling R. (2000), Robust and Efficient Estimation of the Tail Index of a Single-Parameter Pareto Distribution, “North American Actuarial Journal”, 4, pp. 12-27.
Google Scholar

Brazauskas V., Serfling R. (2001), Robust Estimation of Tail Parameters for Two-Parameter Pareto and Exponential Models via Generalized Quantile Statistics, “Extremes”, 3,
Google Scholar

pp. 231-249.
Google Scholar

Brazauskas V., Serfling R. (2004), Favorable Estimators for Fitting Pareto Models: A Study Using Goodness-of-Fit Measures with Actual Data, ASTIN Bulletin, 2, pp. 365-381.
Google Scholar

Dagum C. (2001), A systemic approach to the generation of income distribution models, (in:) Sattinger M. (ed.), Income Distribution, vol. I, E. Elgar, Northampton, pp. 32-53.
Google Scholar

Hyndman J. R., Yao Q. (2002), Nonparametric estimation and symmetry tests for conditional density functions, “Journal of Nonparametric Statistics”, 14 (3), pp. 259 278.
Google Scholar

Kalecki M. (1945), On the Gibrat distribution, “Econometrica”, 13, pp. 161-170.
Google Scholar

Kleiber C., Kotz S. (2002), A characterization of income distributions in terms of generalized Gini coefficients, “Social Choice and Welfare”, 19, pp. 789-794.
Google Scholar

Kleiber C., Kotz S. (2003), Statistical Size Distributions in Economics and Actuarial Sciences, Wiley, New Jersey.
Google Scholar

Kosiorowski D., Zawadzki Z. (2014). DepthProc: An R package for robust exploration of multidimensional economic phenomena. Submitted.
Google Scholar

Kosiorowski D., Tracz, D. (2014a), On robust estimation of Pareto models and its consequences for government aid programs evaluation, (in:) Lula P., Rojek T. (eds.), Knowledge-Economy-Society Contemporary Tools of Organizational Management, pp. 253-267.
Google Scholar

Kosiorowski D., Mielczarek D., Rydlewski J., Snarska M. (2014), Applications of the functional data analysis for extracting meaningful information from families of yield curves and income distribution densities, (in:) Lula P., Rojek T. (eds.), Knowledge-Economy-Society Contemporary Tools of Organizational Management, pp. 309-321.
Google Scholar

Maronna R. A., Martin R. D., Yohai V. J. (2006), Robust Statistics – Theory and Methods, Wiley, Chichester.
Google Scholar

Mosler K. (2013), Depth statistics, (in:) Becker C., Fried R. S. K. (eds.), Robustness and Complex Data Structures, Festschrift in Honour of Ursula Gather. Springer, pp. 17-34.
Google Scholar

Pawlak W., Sztaudynger J. J. (2008), Wzrost gospodarczy a optymalne zróżnicowanie dochodów w USA i Szwecji, “Annales – Etyka w życiu gospodarczym”, 1, pp. 259-271
Google Scholar

Serfling R. (2002), Efficient and Robust Fitting of Lognormal Distributions.
Google Scholar

Victoria-Feser M. P. (2000), Robust Methods for the Analysis of Income Distribution, Inequality and Poverty, “International Statistical Review”, 68, pp. 277-293.
Google Scholar

Pliki dodatkowe

Opublikowane

2015-05-18

Jak cytować

Kosiorowski, D. (2015). WYBRANE ZAGADNIENIA MODELOWANIA ROZKŁADU DOCHODU ORAZ POMIARU NIERÓWNOŚCI DOCHODOWYCH ROZPATRYWANE Z PUNKTU WIDZENIA STATYSTYKI ODPORNEJ. Acta Universitatis Lodziensis. Folia Oeconomica, 6(309). Pobrano z https://czasopisma.uni.lodz.pl/foe/article/view/279

Numer

Dział

Ekonometria regionalna

Podobne artykuły

<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.