Remarks on Statistical Measures for Assessing Quality of Scoring Models
DOI:
https://doi.org/10.18778/0208-6018.343.02Keywords:
credit scoring, scoring model quality, Lorenz and concentration curve, Gini indexAbstract
Granting a credit product has always been at the heart of banking. Simultaneously, banks are obligated to assess the borrower’s credit risk. Apart from creditworthiness, to grant a credit product, banks are using credit scoring more and more often. Scoring models, which are an essential part of credit scoring, are being developed in order to select those clients who will repay their debt. For lenders, high effectiveness of selection based on the scoring model is the primary attribute, so it is crucial to gauge its statistical quality. Several textbooks regarding assessing statistical quality of scoring models are available, there is however no full consistency between names and definitions of particular measures. In this article, the most common statistical measures for assessing quality of scoring models, such as the pseudo Gini index, Kolmogorov‑Smirnov statistic, and concentration curve are reviewed and their statistical characteristics are discussed. Furthermore, the author proposes the application of the well‑known distribution similarity index as a measure of discriminatory power of scoring models. The author also attempts to standardise names and formulas for particular measures in order to finally contrast them in a comparative analysis of credit scoring models.
Downloads
References
Abdou H., Pointon J. (2011), Credit scoring, statistical techniques and evaluation criteria: a review of literature, “Intelligent Systems in Accounting Finance & Management”, vol. 18, no. 2–3, pp. 59–88.
Google Scholar
Anderson R. (2007), The credit scoring toolkit, Oxford University Press, New York.
Google Scholar
Bishop J. A., Chow K. V., Formby J. P. (1994), Testing for Marginal Changes in Income Distributions with Lorenz and Concentration Curves, “International Economic Review”, vol. 35, no. 2, pp. 479–488.
Google Scholar
Cowell F. A. (2000), Measurement of Inequality, [in:] A. B. Atkinson, F. Bourguignon (eds.), Handbook of Income Distribution, vol. 1, Elsevier, Amsterdam, pp. 87–166.
Google Scholar
Crook J. N., Edelman D. B., Thomas L. C. (2007), Recent developments in consumer credit risk assessment, “European Journal of Operational Research”, no. 183, pp. 1447–1465.
Google Scholar
Domański C. (1979), Statystyczne testy nieparametryczne, Państwowe Wydawnictwo Ekonomiczne, Warszawa.
Google Scholar
Domański C. (ed.) (2001), Metody statystyczne. Teoria i zadania, Wydawnictwo Uniwersytetu Łódzkiego, Łódź.
Google Scholar
Finlay S. (2010), Credit Scoring, Response Modelling and Insurance Rating: a practical guide to forecasting consumer behaviour, Palgrave Macmillan, New York.
Google Scholar
Gastwirth J. (1972), The Estimation of the Lorenz Curve and Gini index, “Review of Economics and Statistics”, vol. 54, no. 3, pp. 306–316.
Google Scholar
Gini C. (1912), Variabilità e Mutuabilità. Contributoallo Studio delle Distribuzioni e delle Relazioni Statistiche, C. Cuppini, Bologna.
Google Scholar
Gini C. (1914), Sulla misuradellaconcentrazione e dellavariabilitàdeicaratteri, “Atti R. 1st. Veneto Sci. Lett. Arti”, vol. LXXIII(II), pp. 1203–1248.
Google Scholar
Hosmer D. W., Lemeshow S., Sturdivant R. X. (2013), Applied Logistic Regression, 3rd ed., John Wiley & Sons, New Jersey.
Google Scholar
Jędrzejczak A. (2010), Metody analizy rozkładu dochodów i ich koncentracji, Wydawnictwo Uniwersytetu Łódzkiego, Łódź.
Google Scholar
Kolmogorov A. (1933), Sulla determinazioneempirica di unalegge di distribuzionc, “Instituto Italiano degli Attuari”, no. 4, pp. 1–11.
Google Scholar
Lorenz M. O. (1905), Methods of Measuring the Concentration of Wealth, “Publications of the American Statistical Association”, vol. 9, no. 70, pp. 209–219.
Google Scholar
Newson R. (2006), Confidence intervals for rank statistics: Somers’ D and extensions, “The Stata Journal”, vol. 6, no. 3, pp. 309–334.
Google Scholar
Rezac M., Kolacek J. (2012), List‑based quality indexes for credit scoring models as an alternative to Gini and KS, “Journal of Statistics: Advances in Theory and Applications”, vol. 7, no. 1, pp. 1–23.
Google Scholar
Siddiqi N. (2017), Intelligent credit scoring. Building and Implementing Better Credit Risk Scorecards, 2nd ed., John Wiley & Sons, New Jersey.
Google Scholar
Smirnov N. V. (1936), Sur la distribution de w2 (criterium de M. R. von Mises), “Comptes rendus de l’Académie des Sciences”, no. 202, pp. 449–452 [paper with the same title in Russian “Recueil Math” 1937, no. 2, pp. 973–993].
Google Scholar
Thomas L. C. (2009), Consumer Credit Models: Pricing, Profit, and Portfolio, Oxford University Press, Oxford.
Google Scholar
Vielrose E. (1960), Rozkład dochodów według wielkości, Polskie Wydawnictwo Gospodarcze, Warszawa.
Google Scholar