Wykorzystanie modeli sztucznej inteligencji w bankach komercyjnych – szanse i zagrożenia
DOI:
https://doi.org/10.18778/0208-6018.362.04Słowa kluczowe:
sztuczna inteligencja, uczenie maszynowe, etyka, bankowość, wyjaśnialność AI, regulacjeAbstrakt
Jednym z głównych sektorów, które w dużym stopniu wykorzystują rozwój zaawansowanych metod obliczeniowych, jest sektor bankowy. Cele badań przedstawionych w artykule to: 1) porównanie naukowego i regulacyjnego podejścia do definiowania sztucznej inteligencji (AI) i uczenia maszynowego (ML); 2) zaproponowanie definicji AI i ML na potrzeby regulacyjne, które pozwolą jednoznacznie stwierdzić, czy dana metoda jest AI/ML, czy nie; 3) porównanie złożonych metod ilościowych stosowanych w bankowości pod względem złożoności i interpretowalności w celu jasnej klasyfikacji metod dla zainteresowanych stron (praktyków i kadry zarządzającej); 4) zaproponowanie możliwego podejścia do dalszego rozwoju metod ilościowych w obszarach o wymaganej ścisłej interpretowalności. Przegląd literatury koncentruje się na definicjach AI/ML stosowanych przez naukowców i regulatorów oraz propozycjach zastosowania złożonych rozwiązań ilościowych w różnych domenach bankowości. Badania skupione są na proponowaniu praktycznych definicji AI i ML na podstawie aktualnego stanu wiedzy i wymogów przejrzystości w branży bankowej (bardzo ograniczony apetyt na ryzyko, dotyczący niezgodności z regulacjami) oraz na porównaniu metod ilościowych stosowanych w różnych domenach bankowości wraz z ich oceną. Autor proponuje ogólne i inkluzywne definicje AI i ML na potrzeby regulacyjne, które pozwalają jednoznacznie sklasyfikować konkretne metody. W przypadku zaostrzonych wymagań dotyczących interpretowalności stosowanych metod proponuje stopniowe i kontrolowane zwiększanie złożoności istniejących rozwiązań. Z tego powodu przedstawia ocenę metod ilościowych pod względem interpretowalności i złożoności. Autor uważa również, że definicje AI/ML w dalszych regulacjach powinny umożliwiać jednoznaczne zaklasyfikowanie konkretnych podejść jako AI/ML. Badania skierowane są do twórców regulacji, praktyków i kadry zarządzającej związanej z sektorem bankowym.
Pobrania
Bibliografia
Abdi H., Williams L.J. (2010), Principal Component Analysis, “Wiley Interdisciplinary Reviews: Computational Statistics”, vol. 2, no. 4, pp. 433–459.
Google Scholar
DOI: https://doi.org/10.1002/wics.101
Adamopoulou E., Moussiades L. (2020), An Overview Of Chatbot Technology, [in:] Artificial Intelligence Applications and Innovations: 16th IFIP WG 12.5 International Conference, AIAI 2020, Neos Marmaras, Greece, Proceedings, Part II , 16, pp. 373–383.
Google Scholar
DOI: https://doi.org/10.1007/978-3-030-49186-4_31
Aitken M., Leslie D., Ostmann F., Pratt J., Margetts H., Dorobantu C. (2022), Common Regulatory Capacity for AI, https://doi.org/10.5281/zenodo.6838946 [accessed: 1.11.2022].
Google Scholar
Ala’raj M., Abbod M.F., Majdalawieh M. (2021), Modelling Customers Credit Card Behaviour Using Bidirectional LSTM Neural Networks, “Journal of Big Data”, vol. 8, no. 1, pp. 1–27.
Google Scholar
DOI: https://doi.org/10.1186/s40537-021-00461-7
Alzubi J., Nayyar A., Kumar A. (2018), Machine Learning from Theory to Algorithms: An Overview, “Journal of Physics: Conference Series”, vol. 1142, https://doi.org/10.1088/1742-6596/1142/1/012012
Google Scholar
DOI: https://doi.org/10.1088/1742-6596/1142/1/012012
Artificial Intelligence: A Modern Approach, 4th Global ed. (2022), https://aima.cs.berkeley.edu/global-index.html [accessed: 11.02.2023].
Google Scholar
Basu A., Manning W.G., Mullahy J. (2004), Comparing Alternative Models: Log Vs Cox Proportional Hazard?, “Health Economics”, vol. 13, no. 8, pp. 749–765.
Google Scholar
DOI: https://doi.org/10.1002/hec.852
Bauwens L., Laurent S., Rombouts J.V. (2006), Multivariate GARCH models: a Survey, “Journal of Applied Econometrics”, vol. 21, no. 1, pp. 79–109.
Google Scholar
DOI: https://doi.org/10.1002/jae.842
Biecek P. (2013), Analiza danych z programem R. Modele liniowe z efektami stałymi, losowymi i mieszanymi, Wydawnictwo Naukowe PWN, Warszawa.
Google Scholar
Breiman L., Friedman J.H., Olshen R.A., Stone C.J. (1984), Classification and Regression Trees, The Wadsworth and Brooks, Belmond.
Google Scholar
Buiten M.C. (2019), Towards Intelligent Regulation of Artificial Intelligence, “European Journal of Risk Regulation”, vol. 10, no. 1, pp. 41–59.
Google Scholar
DOI: https://doi.org/10.1017/err.2019.8
Cath C. (2018), Governing Artificial Intelligence: Ethical, Legal and Technical Opportunities and Challenges, “Philosophical Transactions of the Royal Society A”, vol. 376, 20180080.
Google Scholar
DOI: https://doi.org/10.1098/rsta.2018.0080
Chan-Lau M.J.A. (2017), Lasso Regressions and Forecasting Models in Applied Stress Testing, International Monetary Fund, Washington.
Google Scholar
DOI: https://doi.org/10.2139/ssrn.3053191
Chen T., Guestrin C. (2016), XGBoost: A Scalable Tree Boosting System, [in:] KDD ‘16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, pp. 785–794, https://dl.acm.org/doi/proceedings/10.1145/2939672 [accessed: 12.02.2023].
Google Scholar
DOI: https://doi.org/10.1145/2939672.2939785
Chen T.H. (2020), Do You Know Your Customer? Bank Risk Assessment Based on Machine Learning, “Applied Soft Computing”, vol. 86, 105779.
Google Scholar
DOI: https://doi.org/10.1016/j.asoc.2019.105779
Clarke Y.D. (2022), H.R.6580 – 117th Congress (2021–2022): Algorithmic Accountability Act of 2022, https://www.congress.gov/bill/117th-congress/house-bill/6580/text [accessed: 12.02.2023].
Google Scholar
Cunningham P., Delany S.J. (2021), K-Nearest Neighbour Classifiers-A Tutorial, “ACM Computing Surveys (CSUR)”, vol. 54, no. 6, pp. 1–25.
Google Scholar
DOI: https://doi.org/10.1145/3459665
Cyberspace Administration of China (2022), Provisions on the Management of Algorithmic Recommendations in Internet Information Services, https://www.chinalawtranslate.com/en/algorithms/ [accessed: 12.02.2023].
Google Scholar
Dal Pozzolo A. (2015), Adaptive Machine Learning for Credit Card Fraud Detection, Unpublished doctoral dissertation, Université libre de Bruxelles, Faculté des Sciences – Informatique, Bruxelles.
Google Scholar
Dawood E.A.E., Elfakhrany E., Maghraby F.A. (2019), Improve Profiling Bank Customer’s Behavior Using Machine Learning, “IEEE Access”, vol. 7, pp. 109320–109327.
Google Scholar
DOI: https://doi.org/10.1109/ACCESS.2019.2934644
Dobson A.J., Barnett A.G. (2018), An Introduction to Generalized Linear Models, CRC Press, Boca Raton.
Google Scholar
Domingues R., Filippone M., Michiardi P., Zouaoui J. (2018), A Comparative Evaluation of Outlier Detection Algorithms: Experiments and Analyses, “Pattern Recognition”, vol. 74, pp. 406–421.
Google Scholar
DOI: https://doi.org/10.1016/j.patcog.2017.09.037
Dong G., Lai K.K., Yen J. (2010), Credit scorecard based on logistic regression with random coefficients, “Procedia Computer Science”, vol. 1, no. 3, pp. 2463–2468.
Google Scholar
DOI: https://doi.org/10.1016/j.procs.2010.04.278
Dorries N. (2022), Establishing a Pro-Innovation Approach to Regulating AI. An Overview of The UK’s Emerging Approach, Presented to Parliament by The Secretary of State for Digital, Culture, Media and Sport by Command of Her Majesty, Department for Digital, Culture, Media & Sport, UK Parliament Command Paper: CP 728, London.
Google Scholar
Drudi M.L., Nobili S. (2021), A Liquidity Risk Early Warning Indicator for Italian Banks: a Machine Learning Approach, Bank of Italy Temi di Discussione (Working Paper) no. 1337.
Google Scholar
DOI: https://doi.org/10.2139/ssrn.3891566
Emmert-Streib F., Yli-Harja O., Dehmer M. (2020), Artificial Intelligence: A Clarification of Misconceptions, “Myths and Desired Status. Frontiers in Artificial Intelligence”, no. 3, 524339.
Google Scholar
DOI: https://doi.org/10.3389/frai.2020.524339
European Banking Authority (2020), EBA Report on Big Data and Advanced Analytics, EBA/REP/2020/01, Paris.
Google Scholar
European Banking Authority (2021), EBA Discussion Paper on Machine Learning for IRB Models, EBA/DP/2021/04, Paris.
Google Scholar
European Commission (2019), Ethics Guidelines for Trustworthy AI. High Level Expert Group on Artificial Intelligence, Brussels.
Google Scholar
European Commission (2021), Proposal for a Regulation of The European Parliament and of The Council Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts, Brussels.
Google Scholar
European Commission (2022), Proposal for a Regulation of The European Parliament and of The Council Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts – Second Presidency compromise text, Brussels.
Google Scholar
Fraser D.A.S. (1967), Data Transformations and The Linear Model, “The Annals of Mathematical Statistics”, p. 1456–1465.
Google Scholar
DOI: https://doi.org/10.1214/aoms/1177698700
Friedman J.H. (1991), Multivariate Adaptive Regression Splines, “Annals of Statistics”, vol. 19, no. 1, pp. 1–67.
Google Scholar
DOI: https://doi.org/10.1214/aos/1176347963
Ganaie M.A., Hu M., Malik A.K., Tanveer M., Suganthan P.N. (2022), Ensemble deep learning: A review, “Engineering Applications of Artificial Intelligence”, vol. 115, 105151.
Google Scholar
DOI: https://doi.org/10.1016/j.engappai.2022.105151
González P.C., Velásquez J.D. (2013), Characterization and Detection of Taxpayers with False Invoices Using Data Mining Techniques, “Expert Systems with Applications”, vol. 40, no. 5, pp. 1427–1436.
Google Scholar
DOI: https://doi.org/10.1016/j.eswa.2012.08.051
Goodfellow I., Bengio Y., Courville A. (2016), Deep Learning, MIT Press, Cambridge.
Google Scholar
Gosiewska A., Kozak A., Biecek P. (2021), Simpler Is Better: Lifting Interpretability-Performance Trade-Off Via Automated Feature Engineering, “Decision Support Systems”, vol. 150, 113556.
Google Scholar
DOI: https://doi.org/10.1016/j.dss.2021.113556
Hastie T., Tibshirani R., Friedman J. (2008), The Elements of Statistical Learning, Springer Science + Business Media LLC, New York.
Google Scholar
DOI: https://doi.org/10.1007/978-0-387-84858-7
Hijazi S., Kumar R., Rowen C. (2015), Using Convolutional Neural Networks for Image Recognition, Cadence Design Systems Inc., San Jose.
Google Scholar
Hochreiter S., Schmidhuber J. (1997), Long Short-Term Memory, “Neural Computation”, vol. 9, no. 8, pp. 1735–1780.
Google Scholar
DOI: https://doi.org/10.1162/neco.1997.9.8.1735
Hoerl A.E., Kennard R.W. (1970), Ridge Regression: Biased Estimation for Nonorthogonal Problems, “Technometrics”, vol. 12, no. 1, pp. 55–67.
Google Scholar
DOI: https://doi.org/10.1080/00401706.1970.10488634
Hopcroft J.E., Motwani R., Ullman J.D. (2007), Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Boston.
Google Scholar
ISO (2017), ISO/IEC 38505–1: 2017 Information technology – Governance of IT – Governance of data – Part 1: Application of ISO/IEC 38500 to the governance of data, https://www.iso.org/standard/56639.html [accessed: 1.11.2022].
Google Scholar
ISO (2022), ISO/IEC 3WD 22989 Information Technology – Artificial Intelligence – Artificial Intelligence Concepts and Terminology, https://www.iso.org/standard/74296.html [accessed: 1.11.2022].
Google Scholar
Jacobs Jr. M. (2018), The Validation of Machine-Learning Models for The Stress Testing of Credit Risk, “Journal of Risk Management in Financial Institutions”, vol. 11, no. 3, pp. 218–243.
Google Scholar
DOI: https://doi.org/10.20944/preprints201803.0157.v1
James G., Witten D., Hastie T., Tibshirani R. (2017), An Introduction to Statistical Learning with Applications in R, Springer, New York.
Google Scholar
Jiang J. (2007), Linear and Generalized Linear Mixed Models and Their Applications, Springer Science + Business Media LLC, New York.
Google Scholar
Kaisler S.H., Espinosa J.A., Armour F., Money W.H. (2014), Advanced Analytics – Issues and Challenges in a Global Environment, [in:] 47th Hawaii International Conference on System Sciences, Waikoloa, pp. 729–738.
Google Scholar
DOI: https://doi.org/10.1109/HICSS.2014.98
Kambhampati S. (2017), On the Past and Future of AI. Interviews With Experts in Artificial Intelligence, https://goo.gl/nspv6y [accessed: 12.02.2023].
Google Scholar
Kanevski M.F., Timonin V . (2010), Machine Learning Analysis and Modeling of Interest Rate Curves, ESANN, Bruges.
Google Scholar
Kaplan A., Haenlein M. (2019), Siri, Siri, In My Hand: Who’s The Fairest in The Land? On The Interpretations, Illustrations, and Implications of Artificial Intelligence, “Business Horizons”, vol. 62, no. 1, pp. 15–25.
Google Scholar
DOI: https://doi.org/10.1016/j.bushor.2018.08.004
Keyan L., Tingtin Y. (2011), An Improved Support-Vector Network Model for Anti-Money Laundering, [in:] Fifth International Conference on Management of e-Commerce and e-Government, IEEE, Shanghai, pp. 193–196.
Google Scholar
DOI: https://doi.org/10.1109/ICMeCG.2011.50
Khan N.S., Larik A.S., Rajput Q., Haider S. (2013), A Bayesian Approach for Suspicious Financial Activity Reporting, “International Journal of Computers and Applications”, vol. 35, no. 4, pp. 181–187.
Google Scholar
DOI: https://doi.org/10.2316/Journal.202.2013.4.202-3864
Kotios D., Makridis G., Fatouros G., Kyriazis D. (2022), Deep Learning Enhancing Banking Services: A Hybrid Transaction Classification and Cash Flow Prediction Approach, “Journal of Big Data”, vol. 9, no. 1, 100.
Google Scholar
DOI: https://doi.org/10.1186/s40537-022-00651-x
Krennmair P., Schmid T. (2022), Flexible Domain Prediction Using Mixed Effects Random Forests, “Journal of the Royal Statistical Society: Series C (Applied Statistics)”, vol. 71, no. 5, pp. 1865–1894.
Google Scholar
DOI: https://doi.org/10.1111/rssc.12600
Kroll J.A. (2018), The Fallacy of Inscrutability, “Philosophical Transactions of the Royal Society A”, vol. 376, 20180084.
Google Scholar
DOI: https://doi.org/10.1098/rsta.2018.0084
Leo M., Sharma S., Maddulety K. (2019), Machine Learning in Banking Risk Management: A Literature Review, “Risks”, vol. 7, no. 1, 29.
Google Scholar
DOI: https://doi.org/10.3390/risks7010029
Li Z., Liu F., Yang W., Peng S., Zhou J. (2022), A Survey of Convolutional Neural Networks: Analysis, “Applications, and Prospects, IEEE Transactions on Neural Networks and Learning Systems”, vol. 33, no. 12, pp. 6999–7019.
Google Scholar
DOI: https://doi.org/10.1109/TNNLS.2021.3084827
Liang T.H., Lin J.B. (2014), A Two-Stage Segment and Prediction Model for Mortgage Prepayment Prediction And Management, “International Journal of Forecasting”, vol. 30, no. 2, pp. 328–343.
Google Scholar
DOI: https://doi.org/10.1016/j.ijforecast.2013.07.019
Liu F.T., Ting K.M., Zhou Z.H. (2008), Isolation Forest, [in:] Eighth IEEE International Conference on data Mining, Pisa, pp. 413–422.
Google Scholar
DOI: https://doi.org/10.1109/ICDM.2008.17
Liu Y.H. (2018), Feature Extraction and Image Recognition with Convolutional Neural Networks, “Journal of Physics: Conference Series”, vol. 1087, no. 6, 062032.
Google Scholar
DOI: https://doi.org/10.1088/1742-6596/1087/6/062032
Loh L.K.Y., Kueh H.K., Parikh N.J., Chan H., Ho N.J.H., Chua M.C.H. (2022), An Ensembling Architecture Incorporating Machine Learning Models and Genetic Algorithm Optimization for Forex Trading, “FinTech”, vol. 1, no. 2, pp. 100–124.
Google Scholar
DOI: https://doi.org/10.3390/fintech1020008
Luo T., Metawa N. (2019), Intelligent Algorithm of Optimal Investment Model Under Stochastic Interest Rate and Stochastic Volatility, “Journal of Intelligent & Fuzzy Systems”, vol. 37, no. 1, pp. 283–292.
Google Scholar
DOI: https://doi.org/10.3233/JIFS-179085
McCarthy J., Minsky M., Rochester N., Shannon C.E. (1955), A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, http://raysolomonoff.com/dartmouth/boxa/dart564props.pdf [accessed: 1.11.2022].
Google Scholar
McCorduck P. (2004), Machines Who Think, A.K. Peters Ltd., Natick.
Google Scholar
DOI: https://doi.org/10.1201/9780429258985
Mercadier M., Lardy J.P. (2019), Credit Spread Approximation and Improvement Using Random Forest Regression, “European Journal of Operational Research”, vol. 277, no. 1, pp. 351–365.
Google Scholar
DOI: https://doi.org/10.1016/j.ejor.2019.02.005
Mihaljević B., Bielza C., Larrañaga P. (2021), Bayesian Networks for Interpretable Machine Learning and Optimization, “Neurocomputing”, vol. 456, pp. 648–665.
Google Scholar
DOI: https://doi.org/10.1016/j.neucom.2021.01.138
Milojević N., Redzepagic S. (2021), Prospects of Artificial Intelligence and Machine Learning Application in Banking Risk Management, “Journal of Central Banking Theory and Practice”, vol. 10, no. 3, pp. 41–57.
Google Scholar
DOI: https://doi.org/10.2478/jcbtp-2021-0023
Ministry of Economy, Trade and Industry in Japan (2022), Governance Guidelines for Implementation of AI Principles Ver. 1.1” Compiled, https://www.meti.go.jp/english/press/2022/0128_003.html [accessed: 12.02.2023].
Google Scholar
Mitchell T. (1997), Machine Learning, McGraw Hill, New York.
Google Scholar
Monett D., Lewis C.W.P. (2018), Getting Clarity by Defining Artificial Intelligence – A Survey, [in:] V.C. Müller (ed.), Philosophy and Theory of Artificial Intelligence 2017, Springer, Berlin, pp. 212–214.
Google Scholar
DOI: https://doi.org/10.1007/978-3-319-96448-5_21
Monfared S.A., Enke D. (2014), Volatility Forecasting Using a Hybrid Gjr-Garch Neural Network Model, “Procedia Computer Science”, vol. 36, pp. 246–253.
Google Scholar
DOI: https://doi.org/10.1016/j.procs.2014.09.087
Neal R.M. (2000), Markov Chain Sampling Methods for Dirichlet Process Mixture Models, “Journal of Computational and Graphical Statistics”, vol. 9, no. 2, pp. 249–265.
Google Scholar
DOI: https://doi.org/10.1080/10618600.2000.10474879
Nilsson N.J. (2010), The Quest for Artificial Intelligence. A History of Ideas and Achievements, Cambridge University Press, Cambridge.
Google Scholar
NIST (2019), U.S. Leadership in AI: A Plan for Federal Engagement in Developing Technical Standards and Related Tools, National Institute of Standards and Technology, Tech. Rep, https://www.nist.gov/system/files/documents/2019/08/10/ai_standards_fedengagement_plan_9aug2019.pdf [accessed: 1.11.2022].
Google Scholar
OECD (2019), Scoping the OECD AI principles: Deliberations of the Expert Group on Artificial Intelligence at the OECD (AIGO), OECD Publishing, Paris.
Google Scholar
Osisanwo F.Y., Akinsola J.E.T., Awodele O., Hinmikaiye J.O., Olakanmi O., Akinjobi J. (2017), Supervised Machine Learning Algorithms: Classification and Comparison, “International Journal of Computer Trends and Technology”, vol. 48, no. 3, pp. 128–138.
Google Scholar
DOI: https://doi.org/10.14445/22312803/IJCTT-V48P126
Poole D., Mackworth A., Goebel R. (1998), Computational Intelligence: A Logical Approach, Oxford University Press, New York.
Google Scholar
Potrawa T., Tetereva A. (2022), How Much Is the View from The Window Worth? Machine Learning-Driven Hedonic Pricing Model of The Real Estate Market, “Journal of Business Research”, vol. 144, pp. 50–65.
Google Scholar
DOI: https://doi.org/10.1016/j.jbusres.2022.01.027
Pun J., Lawryshyn Y. (2012), Improving Credit Card Fraud Detection Using a Meta-Classification Strategy, “International Journal of Computer Applications”, vol. 56, no. 10, pp. 101–105.
Google Scholar
DOI: https://doi.org/10.5120/8930-3007
Rad H., Low R.K.Y., Miffre J., Faff R.W. (2021), The Commodity Risk Premium and Neural Networks, http://doi.org/10.2139/ssrn.3816170
Google Scholar
DOI: https://doi.org/10.2139/ssrn.3816170
Rao J.N.K. (2003), Small Area Estimation, John Wiley & Sons, New York.
Google Scholar
DOI: https://doi.org/10.1002/0471722189
Rapaport W.J. (2020), What is Artificial Intelligence?, “Journal of Artificial General Intelligence”, vol. 11, no. 2, pp. 52–56.
Google Scholar
Ren J., Lee S.D., Chen X., Kao B., Cheng R., Cheung D. (2009), Naive Bayes Classification of Uncertain Data, [in:] ICDM 2009, The Ninth IEEE International Conference on Data Mining, Miami, pp. 944–949.
Google Scholar
DOI: https://doi.org/10.1109/ICDM.2009.90
Revett K., Gorunescu F., Gorunescu M., Ene M., Magalhaes S., Santos H. (2007), A Machine Learning Approach to Keystroke Dynamics Based User Authentication, “International Journal of Electronic Security and Digital Forensics”, vol. 1, no. 1, pp. 55–70.
Google Scholar
DOI: https://doi.org/10.1504/IJESDF.2007.013592
Russell S.J., Norvig P. (2021), Artificial Intelligence: A Modern Approach, Pearson, Hoboken.
Google Scholar
Sadok H., Sakka F., El Hadi El Maknouzi M. (2022), Artificial Intelligence and Bank Credit Analysis: A Review, “Cogent Economics & Finance”, vol. 10, no. 1, 2023262.
Google Scholar
DOI: https://doi.org/10.1080/23322039.2021.2023262
Sagiroglu S., Sinanc D. (2013), Big data: A review, [in:] 2013 International Conference on Collaboration Technologies and Systems (CTS), IEEE, San Diego, pp. 42–47, https://doi.org/10.1109/CTS.2013.6567202
Google Scholar
DOI: https://doi.org/10.1109/CTS.2013.6567202
Samuel A.L. (1959), Some Studies in Machine Learning Using the Game of Checkers, “IBM Journal of Research and Development”, vol. 3, no. 3, pp. 210–229.
Google Scholar
DOI: https://doi.org/10.1147/rd.33.0210
Sarker I .H., Kayes A.S.M., Badsha S., Alqahtani H., Watters P.N.A. (2020), Cybersecurity Data Science: an Overview from Machine Learning Perspective, “Journal of Big Data”, vol. 7, pp. 1–29.
Google Scholar
DOI: https://doi.org/10.1186/s40537-020-00318-5
Schapire R.E. (2003), The Boosting Approach to Machine Learning: an Overview, [in:] D.D. Denison, M.H. Hansen, C.C. Holmes, B. Mallick, B. Yu (eds.), Nonlinear estimation and classification, Springer, New York, pp. 149–171.
Google Scholar
DOI: https://doi.org/10.1007/978-0-387-21579-2_9
Schultz G.M., Fabozzi F.J. (2021), Rise of the Machines: Application of Machine Learning to Mortgage Prepayment Modeling, “The Journal of Fixed Income”, vol. 31, no. 3, pp. 6–19.
Google Scholar
DOI: https://doi.org/10.3905/jfi.2021.1.123
Shalev-Shwartz S., Ben-David S. (2014), Understanding Machine Learning from Theory to Algorithms, Cambridge University Press, Cambridge.
Google Scholar
DOI: https://doi.org/10.1017/CBO9781107298019
Smola A.J., Schölkopf B. (2004), A tutorial on support vector regression, “Statistics and Computing”, vol. 14, no. 3, pp. 199–222, https://doi.org/10.1023/B:STCO.0000035301.49549.88
Google Scholar
DOI: https://doi.org/10.1023/B:STCO.0000035301.49549.88
Solomonoff R.J. (1985), The Time Scale of Artificial Intelligence; Reflections on Social Effects, “Human Systems Management”, vol. 5, pp. 149–153.
Google Scholar
DOI: https://doi.org/10.3233/HSM-1985-5207
Tavana M., Abtahi A.R., Di Caprio D., Poortarigh M. (2018), An Artificial Neural Network and Bayesian Network Model for Liquidity Risk Assessment in Banking, “Neurocomputing”, vol. 275, pp. 2525–2554.
Google Scholar
DOI: https://doi.org/10.1016/j.neucom.2017.11.034
The American National Standard Dictionary for Information Technology ANSDIT (2022), ANSI INCITS 172–220 (R2007) Information Technology (Revision and Redesignation of ANSI X3.172–1996), https://webstore.ansi.org/Standards/INCITS/ansiincits1722002r2007 [accessed: 1.11.2022].
Google Scholar
Thrun S., Langford J. (1998), Monte Carlo Hidden Markov Models, Carnegie-Mellon University, School of Computer Science, Pittsburgh.
Google Scholar
DOI: https://doi.org/10.21236/ADA363714
Tibshirani R. (1996), Regression Shrinkage and Selection via the LASSO, “Journal of the Royal Statistical Society, Series B (Methodological)”, vol. 58, no. 1, pp. 267–288.
Google Scholar
DOI: https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
Turing A.M. (1950), Computing Machinery and Intelligence, “Mind a Quarterly Review of Psychology and Philosophy”, vol. 236, pp. 433–460.
Google Scholar
DOI: https://doi.org/10.1093/mind/LIX.236.433
Vapnik V., Levin E., Cun Y.L. (1994), Measuring The VC-Dimension of a Learning Machine, “Neural Computation”, vol. 6, no. 5, pp. 851–876.
Google Scholar
DOI: https://doi.org/10.1162/neco.1994.6.5.851
Verma P. (2020), Churn Prediction for Savings Bank Customers: A machine Learning Approach, “Journal of Statistics Applications & Probability”, vol. 9, no. 3, pp. 535–547.
Google Scholar
DOI: https://doi.org/10.18576/jsap/090310
Wang P. (2008), What Do You Mean by “AI”, “Frontiers in Artificial Intelligence and Applications”, vol. 171, no. 1, pp. 362–373.
Google Scholar
Wang P. (2019), On Defining Artificial Intelligence, “Journal of Artificial General Intelligence”, vol. 10, no. 2, pp. 1–37.
Google Scholar
DOI: https://doi.org/10.2478/jagi-2019-0002
Wang Y., Zhang Y., Lu Y., Yu X . (2020), A Comparative Assessment of Credit Risk Model Based on Machine Learning – a Case Study of Bank Loan Data, “Procedia Computer Science”, vol. 174, pp. 141–149.
Google Scholar
DOI: https://doi.org/10.1016/j.procs.2020.06.069
Yampolskiy R.V. (2020), On Defining Differences between Intelligence and Artificial Intelligence, “Journal of Artificial General Intelligence”, vol. 11, no. 2, pp. 68–70.
Google Scholar
Yampolskiy R.V., Fox J. (2012), Artificial General Intelligence and the Human Mental Model, [in:] A. Eden, J. Søraker, J.H. Moor, E. Steinhart (eds.), Singularity Hypotheses: A Scientific and Philosophical Assessment, Springer, Berlin, pp. 129–145.
Google Scholar
DOI: https://doi.org/10.1007/978-3-642-32560-1_7
Yang B.H., Tkachenko M. (2012), Modeling Exposure at Default and Loss Given Default: Empirical Approaches and Technical Implementation, “The Journal of Credit Risk”, vol. 8, no. 2, 81.
Google Scholar
DOI: https://doi.org/10.21314/JCR.2012.139
Ye T., Zhang L. (2019), Derivatives Pricing Via Machine Learning, Boston University Questrom School of Business Research Paper, no. 3352688.
Google Scholar
DOI: https://doi.org/10.2139/ssrn.3352688
Zahi S., Achchab B. (2020), Modeling Car Loan Prepayment Using Supervised Machine Learning, “Procedia Computer Science”, vol. 170, pp. 1128–1133.
Google Scholar
DOI: https://doi.org/10.1016/j.procs.2020.03.055
Zhang H.G., Su C.W., Song Y., Qiu S., Xiao R., Su F. (2017), Calculating Value-At-Risk for High-Dimensional Time Series Using a Nonlinear Random Mapping Model, “Economic Modelling”, vol. 67, pp. 355–367.
Google Scholar
DOI: https://doi.org/10.1016/j.econmod.2017.02.014
Zhang J., Teng F., Lin S. (2019), Agency MBS Prepayment Model Using Neural Networks, “The Journal of Structured Finance”, vol. 24, no. 4, pp. 17–33.
Google Scholar
DOI: https://doi.org/10.3905/jsf.2019.24.4.017
Zou H., Hastie T. (2005), Regularization and variable selection via the elastic net, “Journal of The Royal Statistical Society: Series B (Statistical Methodology)”, vol. 67, no. 2, pp. 301–320.
Google Scholar
DOI: https://doi.org/10.1111/j.1467-9868.2005.00503.x