Application of Kalman Filter to Stochastic Volatility Models of the Orstein‑Uhlenbeck Type
DOI:
https://doi.org/10.18778/0208-6018.337.12Keywords:
stochastic volatility models, Levy processesAbstract
Barndorff‑Nielsen and Shephard (2001) proposed a class of stochastic volatility models in which the volatility process is the Ornstein‑Uhlenbeck process driven by a Levy process without gaussian component. Parameter estimation of these models is difficult because the appropriate likelihood functions do not have a closed‑form expression. The article deals with application of the Kalman filter technique for parameter estimation of such models. The method is applied to EUR/PLN daily exchange rate data. Empirical application is accompanied with simulation study to examine statistical properties of the estimators.
Downloads
References
Andrieu C., Doucet A., Holenstein R. (2010), Particle Markov Chain Monte Carlo Methods, „Journal of the Royal Statistical Society: Series B (Statistical Methodology)”, t. 72(3), s. 269–342.
Google Scholar
Barndorff‑Nielsen O.E., Shephard N. (2001), Non‑Gaussian Ornstein‑Uhlenbeck‑based models and some of their uses in financial economics, „Journal of the Royal Statistical Society: Series B (Statistical Methodology)”, t. 63, nr 2, s. 167–241. doi: 10.1111/1467–9868.00282.
Google Scholar
Barndorff‑Nielsen O.E., Stelzer R. (2013), The multivariate supOU stochastic volatility model, „Mathematical Finance”, t. 23(2), s. 275–296.
Google Scholar
Bertoin J. (1996), Lévy processes, t. 121, Cambridge Tracts in Mathematics, Cambridge University Press, London.
Google Scholar
Bibby B.M., Sørensen M. (1995), Martingale estimation functions for discretely observed diffusion processes, „Bernoulli”, t. 1, nr 1/2, s. 17–39, doi: 10.2307/3318679.
Google Scholar
Byrd R.H., Lu P., Nocedal J., Zhu C. (1995), A limited memory algorithm for bound constrained optimization, „SIAM J. Scientific Computing”, t. 16, nr 5, s. 1190–1208, doi: 10.1137/0916069.
Google Scholar
Cont R., Tankov P. (2004), Financial Modelling with jump processes, Chapman & Hall/CRC, Boca Raton.
Google Scholar
Gander M.P.S., Stephens D.A. (2007a), Stochastic volatility modelling in continuous time with general marginal distributions: Inference, prediction and model selection, „Journal of Statistical Planning and Inference”, t. 137, nr 10, s. 3068–3081, doi: 10.1016/j.jspi.2006.07.015.
Google Scholar
Gander M.P.S., Stephens D.A. (2007b), Simulation and inference for stochastic volatility models driven by levy processes, „Biometrika”, t. 94, nr 3, s. 627–646, doi: 10.1093/biomet/asm048.
Google Scholar
Gourieroux C., Monfort A., Renault E. (1993), Indirect inference, „Journal of Applied Econometrics”, t. 8, nr 1, s. S85–S118, doi: 10.1002/jae.3950080507.
Google Scholar
Grewal M., Andrews A. (2010), Applications of Kalman filtering in aerospace 1960 to the present, „Historical perspectives. IEEE Control Systems Magazine”, t. 30, nr 3, s. 69–78, doi: 10.1109/mcs.2010.936465.
Google Scholar
Griffin J.E., Steel M.F.J. (2006), Inference with non‑gaussian Ornstein‑Uhlenbeck processes for stochastic volatility, „Journal of Econometrics”, t. 134, nr 2, s. 605–644, doi: 10.1016/j.jeconom.2005.07.007.
Google Scholar
Griffin J.E., Steel M.F.J. (2010), Bayesian inference with stochastic volatility models using continuous superpositions of non‑gaussian Ornstein‑Uhlenbeck processes, „Computational Statistics & Data Analysis”, t. 54, nr 11, s. 2594–2608, doi: 10.1016/j.csda.2009.06.008.
Google Scholar
Hamilton J.D. (1994), State‑space models, [w:] R.F. Engle, Handbook of econometrics, t. 4, North Holland, Amsterdam.
Google Scholar
Hubalek F., Posedel P. (2011), Joint analysis and estimation of stock prices and trading volume in Barndorff‑Nielsen and Shephard stochastic volatility models, „Quantitative Finance”, t. 11(6), s. 917–932.
Google Scholar
Kliber P. (2013), Zastosowanie procesów dyfuzji ze skokami do modelowania polskiego rynku finansowego, Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu, Poznań.
Google Scholar
Nicolato E., Venardos E. (2003), Option pricing in stochastic volatility models of the Ornstein‑Uhlenbeck type, „Mathematical Finance”, t. 13, nr 4, s. 445–466, doi: 10.1111/1467–9965.t01–1–00023.
Google Scholar
Parkinson M. (1980), The extreme value method for estimating the variance of the rate of return, „Journal of Business”, t. 53, nr 1, s. 61–65.
Google Scholar
Pigorsch C., Stelzer R. (2009), A multivariate Ornstein‑Uhlenbeck type stochastic volatility model, https://mediatum.ub.tum.de/doc/1079183/file.pdf [dostęp: 28.01.2018].
Google Scholar
Pitt M.K., Shephard N. (1999), Filtering via simulation: Auxiliary particle filters, „Journal of the American Statistical Association”, t. 94, nr 446, s. 590–599, doi: 10.2307/2670179.
Google Scholar
Roberts G.O., Papaspiliopoulos O., Dellaportas P. (2004), Bayesian inference for non‑gaussian Ornstein‑Uhlenbeck stochastic volatility processes, „Journal of the Royal Statistical Society: Series B (Statistical Methodology)”, t. 66, nr 2, s. 369–393, doi: 10.1111/j.1369–7412.2004.05139.x.
Google Scholar
Stelzer R., Tosstorff T., Wittlinger M. (2015), Moment based estimation of supOU processes and a related stochastic volatility model, „Statistics & Risk Modeling”, t. 32(1), s. 1–24.
Google Scholar
Taufer E., Leonenko N. (2009), Simulation of Levy‑driven Ornstein‑Uhlenbeck processes with given marginal distribution, „Computational Statistics & Data Analysis”, t. 53(6), s. 2427–2437.
Google Scholar
Taufer E., Leonenko N., Bee M. (2011), Characteristic function estimation of Ornstein‑Uhlenbeck‑based stochastic volatility models, „Computational Statistics & Data Analysis”, t. 55(8), s. 2525–2539.
Google Scholar