Application of Kalman Filter to Stochastic Volatility Models of the Orstein‑Uhlenbeck Type

Authors

  • Piotr Szczepocki Uniwersytet Łódzki, Wydział Ekonomiczno‑Socjologiczny, Katedra Metod Statystycznych

DOI:

https://doi.org/10.18778/0208-6018.337.12

Keywords:

stochastic volatility models, Levy processes

Abstract

Barndorff‑Nielsen and Shephard (2001) proposed a class of stochastic volatility models in which the volatility process is the Ornstein‑Uhlenbeck process driven by a Levy process without gaussian component. Parameter estimation of these models is difficult because the appropriate likelihood functions do not have a closed‑form expression. The article deals with application of the Kalman filter technique for parameter estimation of such models. The method is applied to EUR/PLN daily exchange rate data. Empirical application is accompanied with simulation study to examine statistical properties of the estimators.

Downloads

Download data is not yet available.

References

Andrieu C., Doucet A., Holenstein R. (2010), Particle Markov Chain Monte Carlo Methods, „Journal of the Royal Statistical Society: Series B (Statistical Methodology)”, t. 72(3), s. 269–342.
Google Scholar

Barndorff‑Nielsen O.E., Shephard N. (2001), Non‑Gaussian Ornstein‑Uhlenbeck‑based models and some of their uses in financial economics, „Journal of the Royal Statistical Society: Series B (Statistical Methodology)”, t. 63, nr 2, s. 167–241. doi: 10.1111/1467–9868.00282.
Google Scholar

Barndorff‑Nielsen O.E., Stelzer R. (2013), The multivariate supOU stochastic volatility model, „Mathematical Finance”, t. 23(2), s. 275–296.
Google Scholar

Bertoin J. (1996), Lévy processes, t. 121, Cambridge Tracts in Mathematics, Cambridge University Press, London.
Google Scholar

Bibby B.M., Sørensen M. (1995), Martingale estimation functions for discretely observed diffusion processes, „Bernoulli”, t. 1, nr 1/2, s. 17–39, doi: 10.2307/3318679.
Google Scholar

Byrd R.H., Lu P., Nocedal J., Zhu C. (1995), A limited memory algorithm for bound constrained optimization, „SIAM J. Scientific Computing”, t. 16, nr 5, s. 1190–1208, doi: 10.1137/0916069.
Google Scholar

Cont R., Tankov P. (2004), Financial Modelling with jump processes, Chapman & Hall/CRC, Boca Raton.
Google Scholar

Gander M.P.S., Stephens D.A. (2007a), Stochastic volatility modelling in continuous time with general marginal distributions: Inference, prediction and model selection, „Journal of Statistical Planning and Inference”, t. 137, nr 10, s. 3068–3081, doi: 10.1016/j.jspi.2006.07.015.
Google Scholar

Gander M.P.S., Stephens D.A. (2007b), Simulation and inference for stochastic volatility models driven by levy processes, „Biometrika”, t. 94, nr 3, s. 627–646, doi: 10.1093/biomet/asm048.
Google Scholar

Gourieroux C., Monfort A., Renault E. (1993), Indirect inference, „Journal of Applied Econometrics”, t. 8, nr 1, s. S85–S118, doi: 10.1002/jae.3950080507.
Google Scholar

Grewal M., Andrews A. (2010), Applications of Kalman filtering in aerospace 1960 to the present, „Historical perspectives. IEEE Control Systems Magazine”, t. 30, nr 3, s. 69–78, doi: 10.1109/mcs.2010.936465.
Google Scholar

Griffin J.E., Steel M.F.J. (2006), Inference with non‑gaussian Ornstein‑Uhlenbeck processes for stochastic volatility, „Journal of Econometrics”, t. 134, nr 2, s. 605–644, doi: 10.1016/j.jeconom.2005.07.007.
Google Scholar

Griffin J.E., Steel M.F.J. (2010), Bayesian inference with stochastic volatility models using continuous superpositions of non‑gaussian Ornstein‑Uhlenbeck processes, „Computational Statistics & Data Analysis”, t. 54, nr 11, s. 2594–2608, doi: 10.1016/j.csda.2009.06.008.
Google Scholar

Hamilton J.D. (1994), State‑space models, [w:] R.F. Engle, Handbook of econometrics, t. 4, North Holland, Amsterdam.
Google Scholar

Hubalek F., Posedel P. (2011), Joint analysis and estimation of stock prices and trading volume in Barndorff‑Nielsen and Shephard stochastic volatility models, „Quantitative Finance”, t. 11(6), s. 917–932.
Google Scholar

Kliber P. (2013), Zastosowanie procesów dyfuzji ze skokami do modelowania polskiego rynku finansowego, Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu, Poznań.
Google Scholar

Nicolato E., Venardos E. (2003), Option pricing in stochastic volatility models of the Ornstein‑Uhlenbeck type, „Mathematical Finance”, t. 13, nr 4, s. 445–466, doi: 10.1111/1467–9965.t01–1–00023.
Google Scholar

Parkinson M. (1980), The extreme value method for estimating the variance of the rate of return, „Journal of Business”, t. 53, nr 1, s. 61–65.
Google Scholar

Pigorsch C., Stelzer R. (2009), A multivariate Ornstein‑Uhlenbeck type stochastic volatility model, https://mediatum.ub.tum.de/doc/1079183/file.pdf [dostęp: 28.01.2018].
Google Scholar

Pitt M.K., Shephard N. (1999), Filtering via simulation: Auxiliary particle filters, „Journal of the American Statistical Association”, t. 94, nr 446, s. 590–599, doi: 10.2307/2670179.
Google Scholar

Roberts G.O., Papaspiliopoulos O., Dellaportas P. (2004), Bayesian inference for non‑gaussian Ornstein‑Uhlenbeck stochastic volatility processes, „Journal of the Royal Statistical Society: Series B (Statistical Methodology)”, t. 66, nr 2, s. 369–393, doi: 10.1111/j.1369–7412.2004.05139.x.
Google Scholar

Stelzer R., Tosstorff T., Wittlinger M. (2015), Moment based estimation of supOU processes and a related stochastic volatility model, „Statistics & Risk Modeling”, t. 32(1), s. 1–24.
Google Scholar

Taufer E., Leonenko N. (2009), Simulation of Levy‑driven Ornstein‑Uhlenbeck processes with given marginal distribution, „Computational Statistics & Data Analysis”, t. 53(6), s. 2427–2437.
Google Scholar

Taufer E., Leonenko N., Bee M. (2011), Characteristic function estimation of Ornstein‑Uhlenbeck‑based stochastic volatility models, „Computational Statistics & Data Analysis”, t. 55(8), s. 2525–2539.
Google Scholar

Published

2018-09-20

How to Cite

Szczepocki, P. (2018). Application of Kalman Filter to Stochastic Volatility Models of the Orstein‑Uhlenbeck Type. Acta Universitatis Lodziensis. Folia Oeconomica, 4(337), 183–201. https://doi.org/10.18778/0208-6018.337.12

Issue

Section

Articles