A spatial approach to intersectoral labor and wage mobility
DOI:
https://doi.org/10.18778/0208-6018.327.08Keywords:
labor mobility, labour market, wage mobility, Markov chains, wage inequality, mobilityAbstract
The article presents the problem of the application of spatial weight matrix based on economic distance in spatial analysis of the intersectoral mobility of labor and wage. The spatial weight matrix expresses potential spatial interactions between the researched regions and forms a basis for further construction of spatial econometric model. Calculations of economic distance were based on the level of chosen measure of labor or wage mobility (respectively), whereas in the spatial model data of their chosen determinants were used (such as the level of unemployment, the average earnings, the level of institutionalism, the index of wage or income inequality). Wide time spectrum of the analysis was obtained thanks to the measure of mobility based on a transition probability matrix estimated with the use of the analysis of Markov processes for aggregated data. Because of the availability of homogeneous, highly aggregated sectoral data only for the period 1994–2010, the analyses were performed for 19 selected OECD countries.
Downloads
References
Abraham K.G., Katz L.F. (1986), Cyclical unemployment: Sectoral shifts or aggregate disturbances?, „Journal of Political Economy”, vol. 94, no. 3, s. 507–522.
Google Scholar
Aghion P., Blanchard O. (1994), Growth, inequality and globalization: theory, history and policy, Cambridge University Press, Cambridge.
Google Scholar
Altonji J.G., Ham J.C. (1990), Variation in Employment Growth in Canada: The Role of External, National, Regional, and Industrial Factors, „Journal of Labor Economics”, vol. 8, no. 1, s. 198–236.
Google Scholar
Anderson T.W., Goodman L.A. (1957), Statistical inference about Markov chains, „Annals of Mathematical Statistics”, vol. 28, no. 1, s. 89–110.
Google Scholar
Antel J.J. (1983), Job change of young men, Ph.D. Dissertation, University of California, Los Angeles.
Google Scholar
Antel J.J. (1986), Human Capital Investment Specialization and the Wage Effects of Voluntary Labor Mobility, „Review of Economics and Statistics”, vol. 68, no. 3, s. 477–483.
Google Scholar
Bartel A., Borjas G. (1981), Wage growth and job turnover: An empirical analysis, „Studies in Labor Markets”, vol. 1, s. 65–90.
Google Scholar
Bartholomew D.J. (1982), Stochastic models for social processes, Wiley, New York.
Google Scholar
Bartholomew D.J. (1996), The statistical approach to social measurement, Academic Press, New York.
Google Scholar
Basile R. (2010), Intra-distribution dynamics of regional per-capita income in Europe: evidence from alternative conditional density estimators, „Statistica”, vol. 70, no. 1, s. 3–22.
Google Scholar
Becker G.S. (1962), Investment in human capital: A theoretical analysis, „Journal of Political Economy”, vol. 70, no. 5, s. 9–49.
Google Scholar
Bigsten A., Mengistae T., Shimeles A. (2007), Mobility and earnings in Ethiopia’s urban labor markets 1994–2004, „Policy Research Working Paper Series”, The World Bank 4168, The World Bank.
Google Scholar
Blumen I.M., Kogan M., McCarthy P.J. (1955), The Industrial Mobility of Labor as a Probability Process, Cornell University Press, Ithaca.
Google Scholar
Bosch M., Maloney W.F. (2010), Comparative analysis of labor market dynamics using Markov processes: An application to informality, „Labour Economics”, vol. 17, no. 4, s. 621–631.
Google Scholar
Brainard S., Cutler D. (1993), Sectoral Shifts and Cyclical Unemployment Reconsidered, „Quarterly Journal of Economics”, vol. 108, s. 219–244.
Google Scholar
Burdett K., (1978), A theory of employee job search and quit rates, „The American Economic Review”, vol. 68, no. 1, s. 212–220.
Google Scholar
Canavire‑Bacarreza G.J., Soria L.F. (2007), Unemployment Duration and Labor Mobility in Argentina: A Socioeconomic-Based Pre- and Post-Crisis Analysis, „CEDLAS, Working Papers”, Universidad Nacional de La Plata 0054.
Google Scholar
Cardoso A.R. (2006), Wage mobility: Do institutions make a difference?, „Labour Economics”, vol. 13, s. 387–404.
Google Scholar
Chan W. (1996), Intersectoral Mobility and Short-Run Labor Market Adjustments, „Journal of Labor Economics”, vol. 14, no. 3, s. 454–471.
Google Scholar
Fabrizi E., Mussida C., (2009), The Determinants of Labour Market Transitions, „Giornale degli Economisti e Annali di Economia”, vol. 68, no. 2, s. 233–265.
Google Scholar
Friedman M. (1962), Capitalism and Freedom: The Relation Between Economic Freedom and Political Freedom, „Capitalism and Freedom”, s. 7–17.
Google Scholar
Funkhouser E. (1996), The urban informal sector in Central America: Household survey evidence, „World Development”, vol. 24, no. 11, s. 1737–1751.
Google Scholar
Funkhouser E. (1997), Mobility and Labor Market Segmentation: The Urban Labor Market in El Salvador‚ „Economic Development and Cultural Change”, vol. 46, no. 1, s. 123–153.
Google Scholar
Garonna P. (2000), Intersectoral labour reallocations and unemployment in Italy, „Labour Economics”, vol. 7, no. 6, s. 711–728.
Google Scholar
Jones M.T. (2005), Estimating Markov transition matrices using proportions data: an application to credit risk, „IMF Working Paper”, no. 219.
Google Scholar
Jovanovic B. (1979), Firm-specific Capital and Turnover, „Journal of Political Economy”, vol. 87, no. 6, s. 1246–1260.
Google Scholar
Kalbfleisch J.D., Lawless J.F. (1984), Least-squares estimation of transition probabilities from aggregate data, „Canadian Journal of Statistics”, vol. 12, no. 3, s. 169–82.
Google Scholar
Kalbfleisch J.D., Lawless J.F., Vollmer W.M. (1983), Estimation in Markov models from aggregate data, „Biometrics”, vol. 39, s. 907–919.
Google Scholar
Keith K., McWilliams A. (1997), Job Mobility and Gender-Based Wage Growth Differentials, „Economic Inquiry”, vol. 35, no. 2, s. 320–333.
Google Scholar
Keith K., McWilliams A. (1999), The returns to mobility and job search by gender, „ILR Review”, vol. 52, no. 3, s. 460–477.
Google Scholar
Kopczewska K. (2006), Ekonometria i statystyka przestrzenna, CeDeWu, Warszawa.
Google Scholar
Kopczewska K. (2010), Modele zmian stopy bezrobocia w ujęciu przestrzennym, „Wiadomości Statystyczne”, vol. 5, s. 26–40.
Google Scholar
Kopczuk W.E.S. (2010), Earnings inequality and mobility in the United States: evidence from social security data since 1937, „Quarterly Journal of Economics”, vol. 125, s. 91–128.
Google Scholar
Kossowski T. (2010), Teoretyczne aspekty modelowania przestrzennego w badaniach regionalnych, „Biuletyn Instytutu Geografii Społeczno‑Ekonomicznej i Gospodarki Przestrzennej Uniwersytetu im. Adama Mickiewicza”, vol. 12, s. 9–26.
Google Scholar
Krstic G., Sanfey P. (2007), Mobility, poverty and well-being among the informally employed in Bosnia and Herzegovina, „Working Papers 101”, European Bank for Reconstruction and Development, Office of the Chief Economist.
Google Scholar
Krugman P. (1994), Europe Jobless, America Penniless?, „Foreign Policy”, vol. 95, s. 19–34.
Google Scholar
Lee T.C., Judge G.G., Zellner A. (1970), Estimating the parameters of the Markov probability model from aggregate time series data, North‑Holland Pub. Co., Amsterdam.
Google Scholar
Light A., McGarry K. (1998), Job change patterns and the wages of young men, „Review of Economics and Statistics”, vol. 80, no. 2, s. 276–286.
Google Scholar
Lilien D.M. (1982), Sectoral Shifts and Cyclical Unemployment, „Journal of Political Economy”, vol. 90, s. 777–793.
Google Scholar
Loprest P.J. (1992), Gender differences in wage growth and job mobility, „American Economic Review”, vol. 82, s. 526–532.
Google Scholar
Loungani P., Rogerson R. (1989), Cyclical Fluctuations and Sectoral Reallocation: Evidence from the PSID, „Journal of Monetary Economics”, vol. 23, no. 2, s. 259–273.
Google Scholar
MacRae E. (1977), Estimation of time-varying Markov processes with aggregate data, „Econometrica”, vol. 45, s. 183–198.
Google Scholar
Maloney W.F. (1999), Does informality imply segmentation in urban labor markets? Evidence from sectoral transitions in Mexico, „The World Bank Economic Review”, vol. 13, no. 2, s. 275–302.
Google Scholar
Markov A.A. (1906), Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie drug ot druga, „Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete”, vol. 2, no. 15, s. 135–156.
Google Scholar
McLaughlin K.J. (1990), General Productivity Growth in a Theory of Quits and Layoffs, „Journal of Labor Economics”, vol. 8, no. 1, s. 75–98.
Google Scholar
Mincer J. (1986), Wage changes in job changes, „NBER Working Paper”, no. 1907.
Google Scholar
Moffitt R.A., Gottschalk P. (2002), Trends in the transitory variance of earnings in the United States, „Economic Journal”, vol. 112, no. 478, s. 68–73.
Google Scholar
Moore M.J., Viscusi W., Zeckhauser R.J. (1998), The Anatomy of Jumps and Falls in Wages, „Research in Labor Economics”, vol. 17, s. 201–232.
Google Scholar
Murphy K.M. (1990), Empirical Age – Earnings Profiles, „Journal of Labor Economics”, vol. 8, s. 202–229.
Google Scholar
Murphy K.M., Topel R.H. (1987), The evolution of unemployment in the United States: 1968–1985, „NBER Macroeconomics Annual”, vol. 2, s. 11–58.
Google Scholar
Mussida C., Muhammad R.A., Pastore F. (2014), Note on Lilien and modified Lilien index, „The Stata Journal”, vol. 4, s. 398–406.
Google Scholar
Mussida C., Pastore F. (2012), Is There a Southern‑Sclerosis? Worker Reallocation and Regional Unemployment in Italy, „IZA Discussion Papers 6954”, Institute for the Study of Labor.
Google Scholar
Naticchioni P., Panigo D. (2004), Employment protection, job-tenure and short term mobility wage gains – A new explanation for the Italian case, „Working Papers – Dipartimento di Economia 4‑DEISFOL”, Dipartimento di Economia, Sapienza University of Rome.
Google Scholar
Neal D. (1995), Industry – specific human capital; evidence from displaced workers, „Journal of Labor Economics”, vol. 13, s. 653–677.
Google Scholar
Palley T. I. (1992), Sectoral Shifts and Cyclical Unemployment: A Reconsideration, „Economic Inquiry”, vol. 30, s. 117–133.
Google Scholar
Pietrzak M.B. (2010), Wykorzystanie odległości ekonomicznej w przestrzennej analizie stopy bezrobocia dla Polski, „Oeconomia Copernicana”, vol. 1, s. 79–98.
Google Scholar
Prais S.J. (1955), Measuring Social Mobility, „Journal of the Royal Statistical Society”, vol. 118, s. 56–66.
Google Scholar
Rogerson P. (2001), Statistical methods for geography, SAGE Publications, London–Thousand Oaks–New Delhi.
Google Scholar
Schluter C. (1998), Statistical inference with mobility indices, „Economics Letters”, vol. 59, no. 2, s. 157–162.
Google Scholar
Shimer R., Alvarez F. (2009), Unemployment and human capital, „Meeting Papers 28”, Society for Economic Dynamics.
Google Scholar
Shorrocks A. (1978), The Measurement of Mobility, „Econometrica”, vol. 46, s. 1013–1024.
Google Scholar
Suchecka J. (2014), Statystyka przestrzenna. Metody analiz struktur przestrzennych, Wydawnictwo C.H. Beck, Warszawa.
Google Scholar
Suchecki B. (2010), Ekonometria przestrzenna. Metody i modele analizy danych przestrzennych, Wydawnictwo C.H. Beck, Warszawa.
Google Scholar
Tansel A., Kan E.O. (2012), The formal/informal employment earnings gap: evidence from Turkey, „IZA Discussion Papers 6556”, Institute for the Study of Labor (IZA).
Google Scholar
Topel R.H., Ward M.P. (1992), Job mobility and the careers of young men, „Quarterly Journal of Economics”, vol. 107, s. 439–479.
Google Scholar
Wacziarg R., Wallack J. S. (2004), Trade liberalization and intersectoral labor movements, „Journal of International Economics”, vol. 64, s. 411–439.
Google Scholar
Zelias A. (red.) (1991), Ekonometria przestrzenna, PWE, Warszawa.
Google Scholar