Zastosowanie filtru Kalmana do modeli stochastycznej zmienności typu Ornsteina‑Uhlenbecka

Autor

  • Piotr Szczepocki Uniwersytet Łódzki, Wydział Ekonomiczno‑Socjologiczny, Katedra Metod Statystycznych

DOI:

https://doi.org/10.18778/0208-6018.337.12

Słowa kluczowe:

stochastyczne modele zmienności, proces Lévy’ego

Abstrakt

O. E. Barndorff‑Nielsen i N. Shephard (2001) zaproponowali klasę modeli stochastycznej zmienności typu Ornsteina‑Uhlenbecka, opartych na procesie Lévy’ego bez składnika Gaussowskiego. Estymacja parametrów modeli tego typu jest trudna, ponieważ nie można wyznaczyć odpowiedniej funkcji wiarygodności w postaci jawnego wzoru. W artykule zaprezentowana zostanie propozycja zastosowania filtru Kalmana do wyznaczania estymatorów parametrów w przypadku złożenia kilku procesów zmienności. Podejście to zostanie wykorzystane do modelowania kursu EUR/PLN. Empiryczny przykład uzupełnia eksperyment symulacyjny mający na celu zbadanie własności tak otrzymanych estymatorów.

Pobrania

Brak dostępnych danych do wyświetlenia.

Bibliografia

Andrieu C., Doucet A., Holenstein R. (2010), Particle Markov Chain Monte Carlo Methods, „Journal of the Royal Statistical Society: Series B (Statistical Methodology)”, t. 72(3), s. 269–342.
Google Scholar

Barndorff‑Nielsen O.E., Shephard N. (2001), Non‑Gaussian Ornstein‑Uhlenbeck‑based models and some of their uses in financial economics, „Journal of the Royal Statistical Society: Series B (Statistical Methodology)”, t. 63, nr 2, s. 167–241. doi: 10.1111/1467–9868.00282.
Google Scholar

Barndorff‑Nielsen O.E., Stelzer R. (2013), The multivariate supOU stochastic volatility model, „Mathematical Finance”, t. 23(2), s. 275–296.
Google Scholar

Bertoin J. (1996), Lévy processes, t. 121, Cambridge Tracts in Mathematics, Cambridge University Press, London.
Google Scholar

Bibby B.M., Sørensen M. (1995), Martingale estimation functions for discretely observed diffusion processes, „Bernoulli”, t. 1, nr 1/2, s. 17–39, doi: 10.2307/3318679.
Google Scholar

Byrd R.H., Lu P., Nocedal J., Zhu C. (1995), A limited memory algorithm for bound constrained optimization, „SIAM J. Scientific Computing”, t. 16, nr 5, s. 1190–1208, doi: 10.1137/0916069.
Google Scholar

Cont R., Tankov P. (2004), Financial Modelling with jump processes, Chapman & Hall/CRC, Boca Raton.
Google Scholar

Gander M.P.S., Stephens D.A. (2007a), Stochastic volatility modelling in continuous time with general marginal distributions: Inference, prediction and model selection, „Journal of Statistical Planning and Inference”, t. 137, nr 10, s. 3068–3081, doi: 10.1016/j.jspi.2006.07.015.
Google Scholar

Gander M.P.S., Stephens D.A. (2007b), Simulation and inference for stochastic volatility models driven by levy processes, „Biometrika”, t. 94, nr 3, s. 627–646, doi: 10.1093/biomet/asm048.
Google Scholar

Gourieroux C., Monfort A., Renault E. (1993), Indirect inference, „Journal of Applied Econometrics”, t. 8, nr 1, s. S85–S118, doi: 10.1002/jae.3950080507.
Google Scholar

Grewal M., Andrews A. (2010), Applications of Kalman filtering in aerospace 1960 to the present, „Historical perspectives. IEEE Control Systems Magazine”, t. 30, nr 3, s. 69–78, doi: 10.1109/mcs.2010.936465.
Google Scholar

Griffin J.E., Steel M.F.J. (2006), Inference with non‑gaussian Ornstein‑Uhlenbeck processes for stochastic volatility, „Journal of Econometrics”, t. 134, nr 2, s. 605–644, doi: 10.1016/j.jeconom.2005.07.007.
Google Scholar

Griffin J.E., Steel M.F.J. (2010), Bayesian inference with stochastic volatility models using continuous superpositions of non‑gaussian Ornstein‑Uhlenbeck processes, „Computational Statistics & Data Analysis”, t. 54, nr 11, s. 2594–2608, doi: 10.1016/j.csda.2009.06.008.
Google Scholar

Hamilton J.D. (1994), State‑space models, [w:] R.F. Engle, Handbook of econometrics, t. 4, North Holland, Amsterdam.
Google Scholar

Hubalek F., Posedel P. (2011), Joint analysis and estimation of stock prices and trading volume in Barndorff‑Nielsen and Shephard stochastic volatility models, „Quantitative Finance”, t. 11(6), s. 917–932.
Google Scholar

Kliber P. (2013), Zastosowanie procesów dyfuzji ze skokami do modelowania polskiego rynku finansowego, Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu, Poznań.
Google Scholar

Nicolato E., Venardos E. (2003), Option pricing in stochastic volatility models of the Ornstein‑Uhlenbeck type, „Mathematical Finance”, t. 13, nr 4, s. 445–466, doi: 10.1111/1467–9965.t01–1–00023.
Google Scholar

Parkinson M. (1980), The extreme value method for estimating the variance of the rate of return, „Journal of Business”, t. 53, nr 1, s. 61–65.
Google Scholar

Pigorsch C., Stelzer R. (2009), A multivariate Ornstein‑Uhlenbeck type stochastic volatility model, https://mediatum.ub.tum.de/doc/1079183/file.pdf [dostęp: 28.01.2018].
Google Scholar

Pitt M.K., Shephard N. (1999), Filtering via simulation: Auxiliary particle filters, „Journal of the American Statistical Association”, t. 94, nr 446, s. 590–599, doi: 10.2307/2670179.
Google Scholar

Roberts G.O., Papaspiliopoulos O., Dellaportas P. (2004), Bayesian inference for non‑gaussian Ornstein‑Uhlenbeck stochastic volatility processes, „Journal of the Royal Statistical Society: Series B (Statistical Methodology)”, t. 66, nr 2, s. 369–393, doi: 10.1111/j.1369–7412.2004.05139.x.
Google Scholar

Stelzer R., Tosstorff T., Wittlinger M. (2015), Moment based estimation of supOU processes and a related stochastic volatility model, „Statistics & Risk Modeling”, t. 32(1), s. 1–24.
Google Scholar

Taufer E., Leonenko N. (2009), Simulation of Levy‑driven Ornstein‑Uhlenbeck processes with given marginal distribution, „Computational Statistics & Data Analysis”, t. 53(6), s. 2427–2437.
Google Scholar

Taufer E., Leonenko N., Bee M. (2011), Characteristic function estimation of Ornstein‑Uhlenbeck‑based stochastic volatility models, „Computational Statistics & Data Analysis”, t. 55(8), s. 2525–2539.
Google Scholar

Pobrania

Opublikowane

2018-09-20

Jak cytować

Szczepocki, P. (2018). Zastosowanie filtru Kalmana do modeli stochastycznej zmienności typu Ornsteina‑Uhlenbecka. Acta Universitatis Lodziensis. Folia Oeconomica, 4(337), 183–201. https://doi.org/10.18778/0208-6018.337.12

Numer

Dział

Artykuł

Podobne artykuły

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.