Modelowanie czasu trwania pierwszej pracy z wykorzystaniem Bayesowskich modeli przyspieszonej porażki AFT

Autor

  • Wioletta Grzenda Warsaw School of Economics, Institute of Statistics and Demography, Event History and Multilevel Analysis Unit

DOI:

https://doi.org/10.18778/0208-6018.330.02

Słowa kluczowe:

parametryczne modele przeżycia, modele AFT, podejście Bayesowskie, MCMC, zatrudnienie

Abstrakt

W niniejszym artykule poddano analizie czas trwania pierwszej pracy osób w wieku 18–30 lat. Celem badania jest znalezienie rozkładu, który najlepiej opisuje badane zjawisko. W modelowaniu wykorzystano modele przyspieszonej porażki AFT w ujęciu Bayesowskim. Wykorzystanie podejścia Bayesowskiego rozszerzyło dotychczasowe badania przez możliwość uwzględnienia w badaniu informacji a priori oraz umożliwiło porównywanie rozkładów parametrów modeli. Ponadto dało możliwość porównania mocy wyjaśniającej konkurencyjnych modeli na gruncie teorii Bayesowskiej. Z wykorzystaniem zaproponowanych metod porównano czas trwania pierwszej pracy dla kobiet i mężczyzn.

Pobrania

Brak dostępnych danych do wyświetlenia.

Bibliografia

Akaike H. (1973), Information theory and an extension of the maximum likelihood principle, [in:] B.N. Petrov, F. Csaki (eds.), Second International Symposium on Information Theory, Aka­demiai Kiado, Budapest.
Google Scholar

Allison P.D. (1995), Survival Analysis Using the SAS®: A Practical Guide, 2nd ed., SAS Institute Inc., Cary.
Google Scholar

Ando T. (2010), Bayesian Model Selection and Statistical Modeling, CRC Press, Boca Raton.
Google Scholar

Bolstad W.M. (2007), Introduction to Bayesian Statistics, Wiley & Sons, USA.
Google Scholar

Casella G., George E.I. (1992), Explaining the Gibbs sample, “The American Statistician”, no. 46, pp. 167–174.
Google Scholar

Central Statistical Office (2014), Labour Force Survey (LFS).
Google Scholar

Congdon P. (2006), Bayesian Statistical Modelling, 2nd ed., John Wiley & Sons Inc., United Kingdom.
Google Scholar

Cox D.R. (1972), Regression models and life‑tables, “Journal of the Royal Statistical Society”, Series B, vol. 34, no. 2, pp. 187–220.
Google Scholar

Drobnič S., Frątczak E. (2001), Employment Patterns of Parried Women in Poland, Careers of Couples in Contemporary Society, Oxford University Press, New York.
Google Scholar

Gelman A., Carlin J.B., Stern H.S., Rubin D.B. (2000), Bayesian Data Analysis, Chapman & Hall/ CRC, London.
Google Scholar

Generations and Gender Programme, http://www.ggp‑i.org/ [accessed: 1.09.2016].
Google Scholar

Gilks W., Wild P. (1992), Adaptive rejection sampling for Gibbs sampling, “Applied Statistics”, no. 41, pp. 337–348.
Google Scholar

Gill J. (2008), Bayesian Method: a Social and Behavioral Sciences Approach, Chapman & Hall/ CRC, London.
Google Scholar

Grzenda W. (2013), The significance of prior information in Bayesian parametric survival models, “Acta Universitatis Lodziensis. Folia Oeconomica”, no. 285, pp. 31–39.
Google Scholar

Ibrahim J.G., Chen M‑H., Sinha D. (2001), Bayesian Survival Analysis, Springer‑Verlag, New York.
Google Scholar

Jeffreys H. (1961), Theory of Probability, 3rd ed., Oxford University Press, Oxford.
Google Scholar

Kalbfleisch J.D., Prentice R.L. (2002), The Statistical Analysis of Failure Time Data, 2nd ed., Wiley Series in Probability and Statistics, Hoboken, New Jersey.
Google Scholar

Kass R.E., Raftery A.E. (1995), Bayes factors, “Journal of the American Statistical Association”, no. 90, pp. 773–795.
Google Scholar

Kim S.W., Ibrahim J.G. (2000), On Bayesian inference for parametric proportional hazards models using noninformative priors, “Lifetime Data Analysis”, no. 6, pp. 331–341.
Google Scholar

Lancaster T. (1979), Econometric methods for the duration of unemployment, “Econometrica”, vol. 47, no. 4, pp. 939–956.
Google Scholar

Landmesser J. (2013), The Use of Methods of Analysis of the Duration of the Labour Force Survey in Poland, Warsaw University of Life Sciences, Warsaw.
Google Scholar

Lawless J.L. (2003), Statistical Models and Methods for Lifetime Data, Wiley‑Interscience, Hoboken, New Jersey.
Google Scholar

Lee E.T., Wang J.W. (2003), Statistical Methods for Survival Data Analysis, John Wiley & Sons, Inc., Hoboken, New Jersey.
Google Scholar

Marzec J. (2008), Bayesian Models of Variable Quality and Limited Research Loans in Default, Cracow University of Economics, Cracow.
Google Scholar

Newton M.A., Raftery A.E. (1994), Approximate Bayesian inference by the weighted likelihood bootstrap, “Journal of the Royal Statistical Society”, Series B (Methodological), vol. 56, no. 1, pp. 3–48.
Google Scholar

Osiewalski J. (2001), Bayesian Econometrics Applications, Cracow University of Economics, Cracow.
Google Scholar

Raftery A. (1996), Bayesian model selection in social research, “Sociological Methodology”, no. 25, pp. 111–163.
Google Scholar

Spiegelhalter D., Best N., Carlin B., Linde A. van der (2002), Bayesian measures of model complexity and fit, “Journal of the Royal Statistical Society”, Series B, no. 64, pp. 583–639.
Google Scholar

Walker S., Mallick B.K. (1999), A Bayesian semiparametric accelerated failure time model, “Biometrics”, no. 55, pp. 477–483.
Google Scholar

Wei L.J. (1992), The accelerated failure time model: A useful alternative to the Cox regression model in survival analysis, “Statistics in Medicine”, no. 11, pp. 1871–1879.
Google Scholar

Wilks S.S. (1935), The likelihood test of independence in contingency tables, “The Annals of Mathematical Statistics”, no. 6, pp. 190–196.
Google Scholar

Wilks S.S. (1938), The large‑sample distribution of the likelihood ratio for testing composite hypotheses, “The Annals of Mathematical Statistics”, no. 9, p. 60–62.
Google Scholar

Opublikowane

2017-11-15

Jak cytować

Grzenda, W. (2017). Modelowanie czasu trwania pierwszej pracy z wykorzystaniem Bayesowskich modeli przyspieszonej porażki AFT. Acta Universitatis Lodziensis. Folia Oeconomica, 4(330), [19]-38. https://doi.org/10.18778/0208-6018.330.02

Numer

Dział

Artykuł