Notes on the Efficiency of Spring Balance Weighing Designs with Correlated Errors for An Even Number of Objects

Authors

DOI:

https://doi.org/10.18778/0208-6018.362.01

Keywords:

D‑efficient design, spring balance weighing design

Abstract

In this paper, some issues regarding the efficiency of spring balance weighing designs for a selected class are presented. We give some conditions determining the relations between the parameters of such designs and construction examples.

Downloads

Download data is not yet available.

References

Banerjee K.S. (1975), Weighing Designs for Chemistry, Medicine, Economics, Operation Research, Statistics, Marcell Dekker Inc, New York.
Google Scholar

Bulutoglu D.A., Ryan K.J. (2009), D-optimal and near D-optimal 2k fractional factorial designs of Resolution V , “Journal of Statistical Planning and Inference”, no. 139, pp. 16–22.
Google Scholar DOI: https://doi.org/10.1016/j.jspi.2008.05.012

Ceranka B., Graczyk M. (2010), Some construction of optimum weighing designs, “Acta Universitatis Lodziensis. Folia Oeconomica”, no. 235, pp. 235–239.
Google Scholar

Ceranka B., Graczyk M. (2012), Notes on the optimum chemical balance weighing designs, “Acta Universitatis Lodziensis. Folia Oeconomica”, no. 269, pp. 91–101.
Google Scholar

Ceranka B., Graczyk M. (2014), On certain A-optimal biased spring balance weighing designs, “Statistics in Transition, New Series”, vol. 15(2), pp. 317–326.
Google Scholar

Ceranka B., Graczyk M. (2018), Highly D-efficient designs for even number of objects, “Revstat-Statistical Journal”, no. 16, pp. 475–486.
Google Scholar

Ceranka B., Graczyk M. (2019), Recent developments in D-optimal designs, “Communications in Statistics – Theory and Methods”, vol. 48, no. 6, pp. 1470–1480.
Google Scholar DOI: https://doi.org/10.1080/03610926.2018.1433851

Ceranka B., Katulska K. (1987a), Zastosowanie optymalnych sprężynowych układów wagowych, „Siedemnaste Colloquium Metodologiczne z Agro-Biometrii”, PAN, pp. 98–108.
Google Scholar

Ceranka B., Katulska K. (1987b), Zastosowanie teorii sprężynowych układów wagowych do analizy doświadczeń z mieszankami, “Listy Biometryczne”, no. XXIV, pp. 17–26.
Google Scholar

Ceranka B., Katulska K. (1989), Application of the biased spring balance weighing theory to estimation of differences of line effects for legume content, “Biometrical Journal”, no. 31, pp. 103–110.
Google Scholar DOI: https://doi.org/10.1002/bimj.4710310113

Gail Z., Kiefer J. (1982), Construction methods for D-optimum weighing designs when , “The Annals of Statistics”, no. 10, pp. 502–510.
Google Scholar DOI: https://doi.org/10.1214/aos/1176345791

Gawande B.N., Patkar A.Y. (1999), Application of factorial design for optimization of Cyclodextrin Glycosyltransferase production from Klebsiella Pneumoniae AS–22, “Biotechnology and Bioengineering”, vol. 64, no. 2, pp. 168–173.
Google Scholar DOI: https://doi.org/10.1002/(SICI)1097-0290(19990720)64:2<168::AID-BIT5>3.0.CO;2-5

Graczyk M. (2013), Some applications on weighing designs, “Biometrical Letters”, vol. 50(1), pp. 15–26.
Google Scholar DOI: https://doi.org/10.2478/bile-2013-0014

Graczyk M., Ceranka B. (2022a), Regular D-optimal spring balance weighing designs with correlated errors, “Communication in Statistics: Theory and Methods” [to appear].
Google Scholar DOI: https://doi.org/10.1080/03610926.2022.2154128

Graczyk M., Ceranka B. (2022b), Contribution to spring balance weighing designs, “Biometrical Letters”, vol. 59(1).
Google Scholar DOI: https://doi.org/10.2478/bile-2022-0004

Jacroux M., Notz W. (1983), On the Optimality of Spring Balance Weighing Designs, “The Annals of Statistics”, no. 11, pp. 970–978.
Google Scholar DOI: https://doi.org/10.1214/aos/1176346262

Katulska K., Smaga Ł. (2010), On some construction of D-optimal chemical balance weighing designs, “Colloquium Biometricum”, no. 40, pp. 37–45.
Google Scholar

Koukouvinos Ch. (1996), Linear models and D-optimal designs for , “Statistics and Probability Letters”, no. 26, pp. 329–332.
Google Scholar DOI: https://doi.org/10.1016/0167-7152(95)00028-3

Raghavarao D. (1971), Constructions and Combinatorial Problems in Designs of Experiments, John Wiley Inc., New York.
Google Scholar

Shah K.R., Sinha B.K. (1989), Theory of Optimal Designs, Springer-Verlag, Berlin.
Google Scholar DOI: https://doi.org/10.1007/978-1-4612-3662-7

Downloads

Published

2023-02-23

How to Cite

Graczyk, M., & Ceranka, B. (2023). Notes on the Efficiency of Spring Balance Weighing Designs with Correlated Errors for An Even Number of Objects. Acta Universitatis Lodziensis. Folia Oeconomica, 1(362), 1–8. https://doi.org/10.18778/0208-6018.362.01

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.