Stratification of Domains Using Composite Estimation to Measure the Revenue Level of Small Businesses in Poland

Authors

  • Grażyna Dehnel Poznań University of Economics and Business, Faculty of Informatics and Electronic Economy, Department of Statistics

DOI:

https://doi.org/10.18778/0208-6018.339.10

Keywords:

robust estimation, business statistics, small area estimation, GREG

Abstract

To meet the growing demand for detailed, precise, accurate and timely estimation of entrepreneurship and economic conditions, it is necessary to systematically extend the scope of information provided by business statistics. In view of the policy aimed at reducing survey costs and burdens for business units, the only way in which this objective can be achieved is by modernizing survey methodology. One area where this kind research is being conducted are applications of indirect estimation based on auxiliary sources of information from administrative sources. Hence, the purpose of the study described in this article is to evaluate the precision of estimates of revenues of small businesses for domains defined by spatial aggregation and business classification by applying stratification in composite estimators based on information collected from administrative registers.

Downloads

Download data is not yet available.

References

Antal E., Tillé Y. (2011), A Direct Bootstrap Method for Complex Sampling Designs From a Finite Population, “Journal of the American Statistical Association”, vol. 106(494), pp. 534–543.
Google Scholar

Bracha C. (2004), Estymacja danych z badania aktywności ekonomicznej ludności na poziomie powiatów dla lat 1995–2002, GUS, Warszawa.
Google Scholar

Chambers R., Chandra H., Salvati N., Tzavidis N. (2014), Outlier robust small area estimation, “Journal of the Royal Statistical Society: Series B”, vol. 76(1), pp. 47–69.
Google Scholar

Chambers R.L, Falvey H., Hedlin D., Kokic P. (2001), Does the Model Matter for GREG Estimation? A Business Survey Example, “Journal of Official Statistics”, vol. 17, no. 4, pp. 527–544.
Google Scholar

Clark R. G., Kokic P., Smith P. A. (2017), Comparison of two Robust Estimation Methods for Business Surveys, “International Statistical Review”, vol. 85, no. 2, pp. 270–289, http://dx.doi.org/10.1111/insr.12177.
Google Scholar

Cochran W. G. (1977), Sampling Techniques, John Wiley and Sons, New York.
Google Scholar

Dehnel G. (2015), Robust regression in monthly business survey, [in:] W. Okrasa (ed.), Statistics in Transition – new series, vol. 16, no. 1, Warsaw, pp. 1–16, http://stat.gov.pl/en/sit‑en/issues‑and‑articles‑sit/previous‑issues/volume–16‑number–1‑spring–2015/ [accessed: 29.102018].
Google Scholar

Dehnel G. (2017), GREG estimation with reciprocal transformation for a Polish business survey, [in:] M. Papież, S. Śmiech (eds.), Proceedings of the 11th Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio‑Economic Phenomena, Foundation of the Cracow University of Economics, Crakow, pp. 67–75.
Google Scholar

Dehnel G., Pietrzak M., Wawrowski Ł. (2017), An Evaluation of Company Performance Using the Fay‑Herriot Model, “Argumenta Oeconomica Cracoviensia”, no. 16, pp. 23–36. http://dx.doi.org/10.15678/AOC.2017.1602.
Google Scholar

Guadarrama M., Molina I., Rao J. N.K (2016), A comparison of small area estimation methods for poverty mapping, “Statistics in Transition New Series and Survey Methodology”, vol. 17, no. 1, pp. 41–66, http://stat.gov.pl/en/sit‑en/issues‑and‑articles‑sit/previous‑issues/volume–17‑number–1‑march–2016/ [accessed: 29.10.2018].
Google Scholar

GUS (2015), Małe i średnie przedsiębiorstwa niefinansowe w latach 2009–2013, Warsaw.
Google Scholar

GUS (2016), Report “Use of administrative data in the survey: Assessment of current business activity of enterprises”, Warsaw.
Google Scholar

GUS (2017), Działalność przedsiębiorstw niefinansowych w 2015 roku, Warsaw.
Google Scholar

Myrskylä M. (2007), Generalised Regression Estimation for Domain Class Frequencies, Tilastokeskus – Statistikcentralen – Statistics Finland, Helsinki.
Google Scholar

PARP (2017), Raport o stanie sektora MSP w Polsce 2017, Warsaw.
Google Scholar

Rao J. N.K., Molina I. (2015), Small area estimation. Wiley series in survey methodology, 2nd ed., Wiley, Hoboken.
Google Scholar

Rao J. N.K., Wu C. F.J. (1988), Resampling Inference With Complex Survey Data, “Journal of the American Statistical Association”, vol. 83(401), pp. 231–241.
Google Scholar

Särndal C. E., Swensson B., Wretman J. (1992), Model Assisted Survey Sampling, Springer Verlag, New York.
Google Scholar

Shao J., Tu D. (1995), The jackknife and bootstrap, Springer Verlag, New York.
Google Scholar

Singh M. P., Gambino J. G., Mantel H. (1993), Issues and options in the provision of small area statistics, [in:] G. Kalton, J. Kordos, R. Platek (eds.), Proceedings of the International Scientific Conference on Small Area Statistics and Survey Designs, vol. 1, Central Statistical Office, Warsaw, pp. 37–75.
Google Scholar

Downloads

Published

2019-02-13

How to Cite

Dehnel, G. (2019). Stratification of Domains Using Composite Estimation to Measure the Revenue Level of Small Businesses in Poland. Acta Universitatis Lodziensis. Folia Oeconomica, 6(339), 161–183. https://doi.org/10.18778/0208-6018.339.10

Issue

Section

Articles

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 > >> 

You may also start an advanced similarity search for this article.