Limiting Cases of the Black-Scholes Type Asymptotics of Call Option Pricing in the Generalised CRR Model
DOI:
https://doi.org/10.18778/0208-6018.363.01Keywords:
Cox‑Ross‑Rubinstein model (CRR model), binomial model, Black‑Scholes formula, option pricingAbstract
The article concerns the generalised Cox‑Ross‑Rubinstein (CRR) option pricing model with new formulas for changes in upper and lower stock prices. The formula for option pricing in this model, which is the Black‑Scholes type formula, and its asymptotics are presented. The aim of the paper is to analyse limiting cases of the obtained asymptotics using probability theory and later data from the Warsaw Stock Exchange. Empirical analyses of option pricing in the generalised CRR model confirm the calculated limits.
Downloads
References
Black F., Scholes M. (1973), The pricing of options and corporate liabilities, “Journal of Political Economy”, vol. 81, pp. 637–654.
Google Scholar
DOI: https://doi.org/10.1086/260062
Capiński M., Kopp E. (2012), The Black–Scholes Model, Mastering Mathematical Finance, Cambridge University Press, Cambridge.
Google Scholar
DOI: https://doi.org/10.1017/CBO9781139026130
Chang L.B., Palmer K. (2007), Smooth convergence in the binomial model, “Finance and Stochastics”, vol. 11, no. 1, pp. 91–105.
Google Scholar
DOI: https://doi.org/10.1007/s00780-006-0020-6
Cox J.C., Rubinstein M. (1985), Options Markets, Prentice-Hall, New Jersey.
Google Scholar
Cox J.C., Ross S.A., Rubinstein M. (1979), Option Pricing. A Simplified Approach, “Journal of Financial Economics”, vol. 7, no. 3, pp. 229–263.
Google Scholar
DOI: https://doi.org/10.1016/0304-405X(79)90015-1
Dana R.A., Jeanblanc M. (2007), Financial Markets in Continuous Time, Springer-Verlag, Berlin.
Google Scholar
Diener F., Diener M. (2004), Asymptotics of the price oscillations of a European call option, “Journal of Mathematical Finance”, vol. 14, no. 2, pp. 271–293.
Google Scholar
DOI: https://doi.org/10.1111/j.0960-1627.2004.00192.x
Elliot R.J., Kopp P.E. (2005), Mathematics of Financial Markets, Springer-Verlag, New York.
Google Scholar
Fraszka-Sobczyk E. (2014), On some generalization of the Cox-Ross-Rubinstein model and its asymptotics of Black-Scholes type, “Bulletin de la Société des Sciences et des Lettres de Łódź”, vol. LXIV, no. 1, pp. 25–34.
Google Scholar
Fraszka-Sobczyk E. (2020), Wycena europejskich opcji kupna w modelach rynku z czasem dyskretnym. Uogólnienia formuły Blacka-Scholesa, Wydawnictwo Uniwersytetu Łódzkiego, Łódź.
Google Scholar
Heston S., Zhou G. (2000), On the rate of convergence of discrete-time contingent claims, “Journal of Mathematical Finance”, vol. 10, no. 1, pp. 53–75.
Google Scholar
DOI: https://doi.org/10.1111/1467-9965.00080
Hull J. (1998), Kontrakty terminowe i opcje, Wydawnictwo WIG-Press, Warszawa.
Google Scholar
Jabbour G., Kramin M., Young S. (2001), Two-state option pricing. Binomial model revisited, “Journal of Futures Markets”, vol. 21, no. 11, pp. 987–1001.
Google Scholar
DOI: https://doi.org/10.1002/fut.2101
Jakubowski J. (2006), Modelowanie rynków finansowych, Wydawnictwo SCRIPT, Warszawa.
Google Scholar
Jakubowski J., Palczewski A., Rutkowski M., Stettner Ł. (2006), Matematyka finansowa. Instrumenty pochodne, Wydawnictwa Naukowo-Techniczne, Warszawa.
Google Scholar
Joshi M. (2010), Achieving higher order convergence for the process of European options in binomial trees, “Mathematical Finance”, vol. 20, no. 1, pp. 89–103.
Google Scholar
DOI: https://doi.org/10.1111/j.1467-9965.2009.00390.x
Karandikar R.L., Rachev S.T. (1995), A generalized binomial model and option pricing formulae for subordinated stock-price processes, “Probability and Mathematical Statistics”, vol. 15, pp. 427–447.
Google Scholar
Leisen D., Reimer M. (2006), Binomial models for option valuation – examining and improving convergence, “Applied Mathematical Finance”, vol. 3, no. 4, pp. 319–346.
Google Scholar
DOI: https://doi.org/10.1080/13504869600000015
Musiela M., Rutkowski M. (2008), Martingale Methods in Financial Modelling, Springer-Verlag, Berlin.
Google Scholar
Rachev S.T., Ruschendorff L. (1994), Models for option process, “Theory of Probability Applications”, vol. 39, no. 1, pp. 120–152.
Google Scholar
DOI: https://doi.org/10.1137/1139005
Ratibenyakool Y., Neammanee K. (2019), Rate of convergence of binomial formula for option pricing, “Communications in Statistics – Theory and Methods”, vol. 3, no. 4, pp. 3537–3556.
Google Scholar
DOI: https://doi.org/10.1080/03610926.2019.1590600
Rendleman R., Bartter B. (1979), Two-State option pricing, “The Journal of Finance”, vol. 34, no. 4, pp. 1092–1110.
Google Scholar
DOI: https://doi.org/10.1111/j.1540-6261.1979.tb00058.x
Rubinstein M. (2000), On the relation between binomial and trinomial option pricing models, “The Journal of Derivatives”, vol. 8, no. 2, pp. 47–50.
Google Scholar
DOI: https://doi.org/10.3905/jod.2000.319149
Shreve S.E. (2004), Stochastic Calculus for Finance I . The Binomial Asset Pricing Model, Springer-Verlag, New York.
Google Scholar
DOI: https://doi.org/10.1007/978-0-387-22527-2
Stettner Ł. (1997), Option pricing in the CRR model with proportional transaction costs. A cone transformation approach, “Applicationes Mathematicae”, vol. 24, no. 4, pp. 475–514.
Google Scholar
DOI: https://doi.org/10.4064/am-24-4-475-514
Walsh J.B. (2003), The rate of convergence of the binomial tree scheme, “The Journal of Finance and Stochastics”, vol. 7, no. 3, pp. 337–361.
Google Scholar
DOI: https://doi.org/10.1007/s007800200094
Xiao X . (2010), Improving speed of convergence for the prices of European options in binomial trees with even numbers of steps, “Applied Mathematics and Computation”, vol. 216, no. 1, pp. 2659–2670.
Google Scholar
DOI: https://doi.org/10.1016/j.amc.2010.03.111
Downloads
Published
Versions
- 2024-01-15 (3)
- 2023-12-08 (2)
- 2023-07-21 (1)