Use of Quantum GIS and SAGA GIS software to build digital elevation model of Grajcarek catchment
DOI:
https://doi.org/10.18778/1508-1117.14.10Keywords:
Digital Elevation Model, Grajcarek catchment, Quantum GIS, SAGA GISAbstract
In this paper use of 1:10 000 scale topographic maps and open-source GIS software to build Digital Elevation Model (DEM) with 5-meters resolution was analysed. DEM was built from contour lines vectorised in Quantum GIS using five different interpolation methods available in SAGA GIS: Ordinary Kriging, Ordinary Kriging with Block Kriging, Thin Plate Spline (Local), Thin Plate Spline (TIN), Multilevel B-Spline Interpolation. Special attention was given to the accuracy of DEM's built with those methods. DEM's were analyzed by crossvalidation of their surface with elevation points vectorised from topographic maps, which were not used in DEM interpolations. Correctness of generated drainage network was also investigated. Although construction of DEM in presented way is very time-consuming, it is often the only way to build highresolution DEM of small catchments or other spatial units, which could be used in largescale hydrological or geomorphological modeling.
References
Camara G., Onsrud H., 2004, Open source GIS Software: myths and realities, Open Access and the Public Domain in Digital Data and Information for Science, The National Academic Press, Washington.
Google Scholar
Grohmann C.H., 2006, SRTM resample with short distance-low nugget kriging, Proceedings of International Symposium on Terrain Analysis and Digital Terrain Modelling, Nanjing.
Google Scholar
Gudowicz J., Buchwał A., Ćwiąkała P., 2010, Zastosowanie wysokorozdzielczych cyfrowych modeli wysokościowych w badaniu zmian mikrorzeźby, „Landform Analysis”, 12, s. 71–78.
Google Scholar
Jensen J.R., Cowen D.C., 1999, remote sensing of urban/suburban infrastructure and socio-economic atributes, „Photogrammetric Engineering & Remote Sensing”, 65 (5), s. 611–622.
Google Scholar
Kroczak R., 2010, Geomorfologiczne i hydrologiczne skutki funkcjonowania dróg polnych na Pogórzu Ciężkowickim, IGiPZ PAN, Warszawa.
Google Scholar
Kurczyński, Z., Gotlib, D., Olszewski, R., Kaczyński, R., Butowtt, J., 2007, Numeryczny model terenu – podstawy, budowa i wykorzystanie, [w:] Kunz M. (red.), Systemy informacji geograficznej w praktyce (studium zastosowań), Wydawnictwo UMK, Toruń.
Google Scholar
Martinez-Wega J., Martin-Isabel R., Romero-Calcerrada R., 2005, Digital cartography and GIS, decision tools for sustainable development in the Province of Cuenca (Central Spain), International Cartographic Conference, La Coruna
Google Scholar
Nita J., Małolepszy Z., Chybiorz R. 2007, Zastosowanie numerycznego modelu terenu do wizualizacji rzeźby terenu i interpretacji budowy geologicznej, „Przegląd Geologiczny”, 55 (6), s. 511–519.
Google Scholar
Ramsey P., 2007, The state of open source GIS, Refractions Research, Victoria.
Google Scholar
Saliszczew K.A., 1984, Kartografia ogólna, PWN, Warszawa.
Google Scholar
Soycan A., Soycan M., 2009, Digital elevatiom model production from scanned topographic contour maps via thin plate spline interpolation, „The Arabian Journal of Science and Engineering”, 34 (1A), s. 121–134.
Google Scholar
Tomczyk A.M., 2010, Cyfrowe modele mikroform rzeźby terenu i ich zastosowanie do badania dynamiki przekształceń powierzchni szlaków turystycznych, „Landform Analysis”, 12, s. 127–136.
Google Scholar
Tomczyk A., Ewertowski M., 2009, Cyfrowe modele wysokościowe w geomorfologii – wprowadzenie, [w:] Zwoliński Z. (red.), GIS – platforma integracyjna geografii, Bogucki Wydawnictwo Naukowe, Poznań, s. 67–87.
Google Scholar
Urbański J., 2010, GIS w badaniach przyrodniczych, Wydawnictwo Uniwersytetu Gdańskiego, Sopot.
Google Scholar
Vassilopoulou S., Hurni L., 2001, The use of digital elevariom models in emergency and socio-economic planning: A case study at Kos-Yali-Nisyros-Tilos Islands, Grece, Proceedings 20th International Cartographic Conference, Beijing, China, s. 3424– 3431.
Google Scholar
Zwoliński Z., 2010, O homologiczności polskiej terminologii geoinformacyjnej, [w:] Zwoliński Z. (red.), Woda w badaniach geograficznych, Bogucki Wydawnictwo Naukowe, Poznań, s. 21–30.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.