Length Neutrosophic Subalgebras of BCK=BCI-Algebras
DOI:
https://doi.org/10.18778/0138-0680.2020.21Keywords:
interval neutrosophic set, interval neutrosophic length, length neutrosophic subalgebraAbstract
Given i, j, k ∈ {1,2,3,4}, the notion of (i, j, k)-length neutrosophic subalgebras in BCK=BCI-algebras is introduced, and their properties are investigated. Characterizations of length neutrosophic subalgebras are discussed by using level sets of interval neutrosophic sets. Conditions for level sets of interval neutrosophic sets to be subalgebras are provided.
References
[1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20(1) (1986), pp. 87–96, DOI: http://dx.doi.org/10.1016/S0165-0114(86)80034-3
Google Scholar
DOI: https://doi.org/10.1016/S0165-0114(86)80034-3
[2] Y. Huang, BCI-algebra, Science Press, Beijing (2006).
Google Scholar
[3] Y. Jun, K. Hur, K. Lee, Hyperfuzzy subalgebras of BCK=BCI-algebras, Annals of Fuzzy Mathematics and Informatics (in press).
Google Scholar
[4] Y. Jun, S. Kim, F. Smarandache, Interval neutrosophic sets with applications in BCK=BCI-algebras, submitted to New Mathematics and Natural Computation.
Google Scholar
[5] J. Meng, Y. Jun, BCI-algebras, Kyungmoon Sa Co., Seoul (1994).
Google Scholar
[6] F. Smarandache, Neutrosophy, Neutrosophic Probability, Set, and Logic, ProQuest Information & Learning, Ann Arbor, Michigan, USA (1998), URL: http://fs.gallup.unm.edu/eBook-neutrosophics6.pdf last edition online.
Google Scholar
[7] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability, American Reserch Press, Rehoboth, NM (1999).
Google Scholar
[8] F. Smarandache, Neutrosophic set – a generalization of the intuitionistic fuzzy set, International Journal of Pure and Applied Mathematics, vol. 24(3) (2005), pp. 287–297.
Google Scholar
[9] H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Interval Neutrosophic Sets and Logic: Theory and Applications in Computing, no. 5 in Neutrosophic Book Series, Hexis (2005).
Google Scholar
[10] H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Interval Neutrosophic Sets and Logic: Theory and Applications in Computing, no. 5 in Neutrosophic Book Series, Hexis, Phoenix, Ariz, USA (2005), DOI: http://dx.doi.org/10.6084/m9.figshare.6199013.v1
Google Scholar
[11] H. Wang, Y. Zhang, R. Sunderraman, Truth-value based interval neutrosophic sets, [in:] 2005 IEEE International on Conference Granular Computing, vol. 1 (2005), pp. 274–277, DOI: http://dx.doi.org/10.1109/GRC.2005.1547284
Google Scholar
DOI: https://doi.org/10.1109/GRC.2005.1547284
Downloads
Published
Versions
- 2020-12-30 (2)
- 2020-10-08 (1)
How to Cite
Issue
Section
License
Copyright (c) 2020 Bulletin of the Section of Logic
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.