On GE-algebras
DOI:
https://doi.org/10.18778/0138-0680.2020.20Keywords:
(transitive) GE-algebra, filter, upper set, congruence kernelAbstract
Hilbert algebras are important tools for certain investigations in intuitionistic logic and other non-classical logic and as a generalization of Hilbert algebra a new algebraic structure, called a GE-algebra (generalized exchange algebra), is introduced and studied its properties. We consider filters, upper sets and congruence kernels in a GE-algebra. We also characterize congruence kernels of transitive GE-algebras.
References
[1] J. C. Abbott, Semi-boolean algebra, Matematički Vesnik, vol. 4(19) (1967), pp. 177–198.
Google Scholar
[2] R. A. Borzooei, S. Khosravi Shoar, Implication algebras are equivalent to the dual implicative BCK-algebras, Scientiae Mathematicae Japonicae, vol. 63(3) (2006), pp. 429–431.
Google Scholar
[3] R. A. Borzooei, J. Shohani, On generalized Hilbert algebras, Italian Journal of Pure and Applied Mathematics, vol. 29 (2012), pp. 71–86.
Google Scholar
[4] D. Buşneag, A note on deductive systems of a Hilbert algebra, Kobe Journal of Mathematics, vol. 2(1) (1985), pp. 29–35.
Google Scholar
[5] D. Buşneag, Categories of algebraic logic, Editura Academiei Romane (2006).
Google Scholar
[6] S. Celani, A note on homomorphisms of Hilbert algebras, International Journal of Mathematics and Mathematical Sciences, vol. 29(1) (2002), pp. 55–61, DOI: https://doi.org/10.1155/S0161171202011134
Google Scholar
DOI: https://doi.org/10.1155/S0161171202011134
[7] W. Y. C. Chen, J. S. Oliveira, Implication algebras and the Metropolis-Rota axioms for cubic lattices, Journal of Algebra, vol. 171(2) (1995), pp. 383–396, DOI: https://doi.org/10.1006/jabr.1995.1017
Google Scholar
DOI: https://doi.org/10.1006/jabr.1995.1017
[8] A. Diego, Sur les algèbres de Hilbert, Translated from the Spanish by Luisa Iturrioz. Collection de Logique Mathématique, Sér. A, Fasc. XXI, Gauthier-Villars, Paris; E. Nauwelaerts, Louvain (1966).
Google Scholar
[9] A. Figallo, Jr., A. Ziliani, Remarks on Hertz algebras and implicative semilattices, Bulletin of the Section of Logic, vol. 34(1) (2005), pp. 37–42.
Google Scholar
DOI: https://doi.org/10.1515/dema-2004-0202
[10] A. V. Figallo, G. Z. Ramón, S. Saad, A note on the Hilbert algebras with infimum, Matemática Contemporânea, vol. 24 (2003), pp. 23–37, 8th Workshop on Logic, Language, Informations and Computation – WoLLIC'2001 (Brasília).
Google Scholar
DOI: https://doi.org/10.21711/231766362003/rmc242
[11] S. M. Hong, Y. B. Jun, On deductive systems of Hilbert algebras, Korean Mathematical Society. Communications, vol. 11(3) (1996), pp. 595–600.
Google Scholar
[11] Y. Imai, K. Iséki, On axiom systems of propositional calculi, XIV, Proceedings of the Japan Academy, vol. 42(1) (1966), pp. 19–22, DOI: https://doi.org/10.3792/pja/1195522169
Google Scholar
DOI: https://doi.org/10.3792/pja/1195522169
[13] Y. B. Jun, Commutative Hilbert algebras, Soochow Journal of Mathematics, vol. 22(4) (1996), pp. 477–484.
Google Scholar
[14] H. S. Kim, Y. H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae, vol. 66(1) (2007), pp. 113–116.
Google Scholar
[15] A. Monteiro, Lectures on Hilbert and Tarski Algebras, Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca, Argentina (1960).
Google Scholar
[16] A. A. Monteiro, Sur les algèbres de Heyting symétriques, Portugaliae Mathematica, vol. 39(1–4) (1980), pp. 1–237 (1985), special issue in honor of António Monteiro.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.