Roughness of filters in equality algebras

Authors

  • Gholam Reza Rezaei Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran
  • Rajab Ali Borzooei Department of Mathematics, Shahid Beheshti University, Tehran, Iran
  • Mona Aaly Kologani Department of Mathematics, Shahid Beheshti University, Tehran, Iran
  • Young Bae Jun Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea

DOI:

https://doi.org/10.18778/0138-0680.2023.01

Keywords:

equality algebra, approximation space, (lower) upper approximation, filter, (D-lower) D-upper filter

Abstract

Rough is an excellent mathematical tool for the analysis of a vague description of actions in decision problems. Now, in this paper by considering the notion of an equality algebra, the notion of the lower and the upper approximations are introduced and some properties of them are given. Moreover, it is proved that the lower and the upper approximations are an interior operator and a closure operator, respectively. Also, using D-lower and D-upper approximation, conditions for a nonempty subset to be definable are provided and investigated that under which condition D-lower and D-upper approximation can be filter.

References

R. Biswas, S. Nanda, Rough groups and rough subgroups, Bulletin of the Polish Academy of Sciences Mathematics, vol. 42(3) (1994), pp. 251–254, DOI: https://doi.org/10.1007/11548669_1.
Google Scholar DOI: https://doi.org/10.1007/11548669_1

T. B. Iwiński, Algebraic approach to rough sets, Bulletin of the Polish Academy of Sciences, vol. 35 (1987), pp. 673–683, DOI: https://doi.org/10.1007/11548669_14.
Google Scholar DOI: https://doi.org/10.1007/11548669_14

S. Jenei, Equality algebras, Studia Logica, vol. 56(2) (2010), pp. 183–186, DOI: https://doi.org/10.1109/CINTI.2010.5672249.
Google Scholar DOI: https://doi.org/10.1109/CINTI.2010.5672249

S. Jenei, Equality algebras, Studing Logics, vol. 100 (2012), pp. 1201–1209.
Google Scholar DOI: https://doi.org/10.1007/s11225-012-9457-0

S. Jenei, Kóródi, On the variety of equality algebras, Fuzzy Logic and Technology, (2011), pp. 153–155, DOI: https://doi.org/10.2991/eusflat.2011.1.
Google Scholar DOI: https://doi.org/10.2991/eusflat.2011.1

Y. B. Jun, Roughness of ideals in BCK-algebras, Scientiae Mathematicae Japonicae, vol. 7 (2002), pp. 115––119.
Google Scholar

Y. B. Jun, K. H. Kim, Rough set theory applied to BCC-algebras, International Mathematical Forum, vol. 2(41-44) (2007), pp. 2023–2029,
Google Scholar

DOI: https://doi.org/10.12988/imf.2007.07182.
Google Scholar DOI: https://doi.org/10.12988/imf.2007.07182

N. Kuroki, Rough ideals in semigroups, Information Sciences, vol. 100 (1997), pp. 139–163, DOI: https://doi.org/10.1016/S0020-0255(96)00274-5.
Google Scholar DOI: https://doi.org/10.1016/S0020-0255(96)00274-5

N. Kuroki, J. N. Mordeson, Structure of rough sets and rough groups, Journal of Fuzzy Mathematics, vol. 5 (1997), pp. 183–191.
Google Scholar

V. Novák, B. D. Baets, EQ-algebras, Fuzzy Sets and Systems, vol. 160(20) (2009), pp. 2956–2978, DOI: https://doi.org/10.1016/j.fss.2009.04.010.
Google Scholar DOI: https://doi.org/10.1016/j.fss.2009.04.010

Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences, vol. 11(5) (1982), pp. 341–356, DOI: https://doi.org/10.1007/BF01001956.
Google Scholar DOI: https://doi.org/10.1007/BF01001956

S. Rasouli, B. Davvaz, Roughness in MV-algebras, Information Sciences, vol. 180(5) (2010), pp. 737–747, DOI: https://doi.org/10.1016/j.ins.2009.11.008.
Google Scholar DOI: https://doi.org/10.1016/j.ins.2009.11.008

F. Zebardast, R. A. Borzooei, M. A. Kologani, Results on equality algebras, Information Sciences, vol. 381 (2017), pp. 270–282, DOI:
Google Scholar

https://doi.org/10.1016/j.ins.2016.11.027.
Google Scholar DOI: https://doi.org/10.1016/j.ins.2016.11.027

Downloads

Published

2023-01-25

How to Cite

Rezaei, G. R., Borzooei, R. A., Aaly Kologani, M., & Jun, Y. B. (2023). Roughness of filters in equality algebras. Bulletin of the Section of Logic, 18 pp. https://doi.org/10.18778/0138-0680.2023.01

Issue

Section

Research Article

Most read articles by the same author(s)

1 2 > >>