Konstrukcja efektywnego portfela przy użyciu metod analizy skupień

Autor

  • Jerzy Korzeniewski University of Łódź, Faculty of Economics and Sociology, Department of Statistical Methods

DOI:

https://doi.org/10.18778/0208-6018.333.06

Słowa kluczowe:

analiza skupień, portfel inwestycyjny, liczba skupień, wskaźnik Sharpa

Abstrakt

Stosując metody statystyczne do optymalizacji swoich decyzji inwestycyjnych, inwestorzy stają przed bardzo istotnym problemem skonstruowania dobrze zdywersyfikowanego portfela inwestycyjnego składającego się z niewielkiej liczby pozycji. Wśród wielu metod stosowanych do konstrukcji takiego portfela są metody wykorzystujące grupowanie wszystkich spółek w homogeniczne grupy spółek, po którym to etapie następuje wybieranie reprezentanta każdej grupy w celu utworzenia ostatecznej postaci portfela. Etap grupowania nie musi pokrywać się z przynależnością sektorową spółek. Grupowanie może być wykonywane za pomocą metod analizy skupień i w tym procesie bardzo istotne jest ustalanie właściwej liczby skupień. Celem niniejszego artykułu jest zaproponowanie nowej techniki konstrukcji portfela inwestycyjnego, odnoszącej się zarówno do ustalenia liczby pozycji w portfelu, jak również do wyboru reprezentantów skupień. Stosowane metody grupowania spółek to klasyczna metoda k‑średnich oraz algorytm PAM (Partitioning Around Medoids). Technika jest testowana na danych 85 największych spółek giełdowych z parkietu warszawskiego z lat 2011–2016. Wyniki są bardzo obiecujące w sensie możliwości opracowania algorytmu opartego na analizie skupień, który prawie nie wymagałby interwencji inwestora.

Pobrania

Brak dostępnych danych do wyświetlenia.

Bibliografia

Bensmail H., DeGennaro R. (2004), Analyzing Imputed Financial Data: A New Approach to Cluster Analysis, FRB of Atlanta Working Paper no. 2004–20, Atlanta, https://www.econstor.eu/bitstream/10419/100973/1/wp2004–20.pdf [accesed: 1.08.2015].
Google Scholar

Craighead S., Klemesrud B. (2002), Stock Selection Based on Cluster and Outlier Analysis, Fifteenth International Symposium on Mathematical Theory of Networks and Systems, University of Notre Dame, Notre Dame, Indiana, https://www.researchgate.net/publication/272175812_Stock_Selection_Based_on_Cluster_and_Outlier_Analysis [accesed: 1.08.2015].
Google Scholar

Gatnar E., Walesiak M. (2004), Metody statystycznej analizy wielowymiarowej w badaniach marketingowych, Wydawnictwo Akademii Ekonomicznej we Wrocławiu, Wrocław.
Google Scholar

Korzeniewski J. (2014), Indeks wyboru liczby skupień w zbiorze danych, “Przegląd Statystyczny”, vol. 61, no. 2, pp. 169–180.
Google Scholar

Marvin K. (2015), Creating Diversified Portfolios Using Cluster Analysis, unpublished research, pp. 1–15, https://www.cs.princeton.edu/sites/default/files/uploads/karina_marvin.pdf [accesed: 1.08.2015].
Google Scholar

Pasha S., Leong P. (2013), Cluster Analysis of High‑Dimensional High‑Frequency Financial Time Series, IEEE Conference on Computational Intelligence for Financial Engineering & Economics, Piscataway, http://ieeexplore.ieee.org/document/6611700/ [accesed: 1.08.2015].
Google Scholar

Ren Z. (2005), Portfolio Construction Using Clustering Methods, Thesis at the Worcester Polytechnic Institute, Worcester, https://web.wpi.edu/Pubs/ETD/Available/etd–042605–092010/unrestricted/ZhiweiRen.pdf [accesed: 1.08.2015].
Google Scholar

Rosén F. (2006), Correlation Based Clustering of the Stockholm Stock Exchange, Master’s Thesis, School of Business, Stockholm University, Stockholm, http://www.diva‑portal.org/smash/get/diva2:196577/FULLTEXT01.pdf [accesed: 1.08.2015].
Google Scholar

Opublikowane

2018-02-27

Jak cytować

Korzeniewski, J. (2018). Konstrukcja efektywnego portfela przy użyciu metod analizy skupień. Acta Universitatis Lodziensis. Folia Oeconomica, 1(333), [85]-92. https://doi.org/10.18778/0208-6018.333.06

Numer

Dział

Artykuł

Podobne artykuły

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.