One Value of Smoothing Parameter vs Interval of Smoothing Parameter Values in Kernel Density Estimation
DOI:
https://doi.org/10.18778/0208-6018.332.05Keywords:
kernel density estimation, smoothing parameter, ad hoc methodsAbstract
Ad hoc methods in the choice of smoothing parameter in kernel density estimation, although often used in practice due to their simplicity and hence the calculated efficiency, are characterized by quite big error. The value of the smoothing parameter chosen by Silverman method is close to optimal value only when the density function in population is the normal one. Therefore, this method is mainly used at the initial stage of determining a kernel estimator and can be used only as a starting point for further exploration of the smoothing parameter value. This paper presents ad hoc methods for determining the smoothing parameter. Moreover, the interval of smoothing parameter values is proposed in the estimation of kernel density function. Basing on the results of simulation studies, the properties of smoothing parameter selection methods are discussed.
Downloads
References
Baszczyńska A. (2014). Computer-Assisted Choice of Smoothing Parameter in Kernel Methods Applied in Economic Analysis. Quantitative Methods in Economics (Metody Ilościowe w Badaniach Ekonomicznych). Warsaw University of Life Sciences Press. Warsaw. XV/2. 37-46.
Google Scholar
Baszczyńska A. (2016). Nonclassical Parameters in Kernel Estimation. Bulletin de la Société des Sciences et des Letters de Łódź. Recherches sur les Déformations. 1. LXVI. 2016. 135-148.
Google Scholar
Heidenreich N.. Schindler A.. Sperlich S. (2013). Bandwidth Selection for Kernel Density Estimation: a Review of Fully Automatic Selectors. AStA Advances in Statistical Analysis. 97. 4. 403–433.
Google Scholar
Horová I.. Koláček J.. Zelinka J. (2012). Kernel Smoothing in Matlab. Theory and Practice of Kernel Smoothing. World Scientific. New Jersey.
Google Scholar
Li Q.. Racine J. S. (2007). Nonparametric Econometrics. Theory and Practice. Princeton University Press. Princeton and Oxford.
Google Scholar
Kulczycki P. (2005). Estymatory jądrowe w analizie systemowej. Wydawnictwa Naukowo-Techniczne. Warszawa.
Google Scholar
Pekasiewicz D. (2015). Statystyki pozycyjne w procedurach estymacji i ich zastosowania w badaniach ekonomicznych. Wydawnictwo Uniwersytetu Łódzkiego. Łódź.
Google Scholar
Silverman B.W. (1996). Density Estimation for Statistics and Data Analysis. Chapman and Hall. London.
Google Scholar
Scott D. (2015). Multivariate Density Estimation. Theory, Practice, and Visualization. Wiley. Hoboken, New Jersey.
Google Scholar
Wand M. P.. Jones M.C. (1995). Kernel Smoothing. Chapman and Hall. London.
Google Scholar