Empirical and Kernel Estimation of the ROC Curve

Authors

  • Aleksandra Katarzyna Baszczyńska University of Łódź

DOI:

https://doi.org/10.18778/0208-6018.311.06

Keywords:

ROC curve, empirical estimator, kernel method, smoothing parameter, kernel function

Abstract

The paper presents chosen methods for estimating the ROC (Receiver Operating Characteristic) curve, including parametric and nonparametric procedures. Nonparametric  approach may involve the use of empirical method or kernel method of the ROC curve estimation. In the analysis, an attempt of comparison of empirical and kernel ROC estimators is done, considering the impact of sample size, choice of smoothing parameter and kernel function in kernel estimation on the results of the estimation. Based on the results of simulation studies, some suggestions, useful in the procedures of nonparametric ROC curve are determined.

Downloads

Download data is not yet available.

Author Biography

Aleksandra Katarzyna Baszczyńska, University of Łódź

The analysis of properties of kernel methods.

References

Chrzanowski M. (2014), Weighted Empirical Likelihood Inference for the Area under the ROC Curve, Journal of Statistical Planning and Inference, 147, 159-172.
Google Scholar

Domański C., Pekasiewicz D., Baszczyńska A., Witaszczyk A. (2014), Testy statystyczne w procesie podejmowania decyzji, Wydawnictwo Uniwersytetu Łódzkiego, Łódź.
Google Scholar

Fawcett T. (2006), An Introduction to ROC Analysis, Pattern Recognition Letters, 27, 861-874.
Google Scholar

Harańczyk G. (2010), Krzywe ROC, czyli ocena jakości klasyfikatora i poszukiwanie optymalnego punktu odcięcia, Statsoft Polska, www.statsoft.pl/czytelnia.html.
Google Scholar

Horová I., Koláček J., Zelinka J. (2012), Kernel Smoothing in Matlab. Theory and Practice of Kernel Smoothing, World Scientific, New Jersey.
Google Scholar

Krzanowski W., Hand D. (2009), ROC Curves for Continuous Data, CRC Press.
Google Scholar

Krzyśko M., Wołyński W., Górecki T., Skorzybut M. (2008), Systemy uczące się. Rozpoznawanie wzorców, analiza skupień i redukcja wymiarowości, Wydawnictwa Naukowo-Techniczne, Warszawa.
Google Scholar

Lloyd C. (2002), Estimation of a Convex ROC Curves, Statistics and Probability Letters, 59, 1, 99-111.
Google Scholar

Marron J., Wand M. (1992), Exact Mean Integrated Squared Error, The Annals of Statistics, 20, 2, 712-736.
Google Scholar

Misztal M. (2014), On the Selected Methods for Evaluating Classification Models, Acta Universitatis Lodziensis Folia Oeconomica , 3 (302), 161-173.
Google Scholar

Ruzgas T., Drulyrè I. (2013), Kernel Density Estimation for Gaussian Mixture Models, Lithuanian Journal of Statistics, 52, 1, 14-21.
Google Scholar

Downloads

Additional Files

Published

2016-01-07

How to Cite

Baszczyńska, A. K. (2016). Empirical and Kernel Estimation of the ROC Curve. Acta Universitatis Lodziensis. Folia Oeconomica, 1(311). https://doi.org/10.18778/0208-6018.311.06

Issue

Section

MSA2015

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 > >> 

You may also start an advanced similarity search for this article.