Empirical and Kernel Estimation of the ROC Curve
DOI:
https://doi.org/10.18778/0208-6018.311.06Keywords:
ROC curve, empirical estimator, kernel method, smoothing parameter, kernel functionAbstract
The paper presents chosen methods for estimating the ROC (Receiver Operating Characteristic) curve, including parametric and nonparametric procedures. Nonparametric approach may involve the use of empirical method or kernel method of the ROC curve estimation. In the analysis, an attempt of comparison of empirical and kernel ROC estimators is done, considering the impact of sample size, choice of smoothing parameter and kernel function in kernel estimation on the results of the estimation. Based on the results of simulation studies, some suggestions, useful in the procedures of nonparametric ROC curve are determined.
Downloads
References
Chrzanowski M. (2014), Weighted Empirical Likelihood Inference for the Area under the ROC Curve, Journal of Statistical Planning and Inference, 147, 159-172.
Google Scholar
Domański C., Pekasiewicz D., Baszczyńska A., Witaszczyk A. (2014), Testy statystyczne w procesie podejmowania decyzji, Wydawnictwo Uniwersytetu Łódzkiego, Łódź.
Google Scholar
Fawcett T. (2006), An Introduction to ROC Analysis, Pattern Recognition Letters, 27, 861-874.
Google Scholar
Harańczyk G. (2010), Krzywe ROC, czyli ocena jakości klasyfikatora i poszukiwanie optymalnego punktu odcięcia, Statsoft Polska, www.statsoft.pl/czytelnia.html.
Google Scholar
Horová I., Koláček J., Zelinka J. (2012), Kernel Smoothing in Matlab. Theory and Practice of Kernel Smoothing, World Scientific, New Jersey.
Google Scholar
Krzanowski W., Hand D. (2009), ROC Curves for Continuous Data, CRC Press.
Google Scholar
Krzyśko M., Wołyński W., Górecki T., Skorzybut M. (2008), Systemy uczące się. Rozpoznawanie wzorców, analiza skupień i redukcja wymiarowości, Wydawnictwa Naukowo-Techniczne, Warszawa.
Google Scholar
Lloyd C. (2002), Estimation of a Convex ROC Curves, Statistics and Probability Letters, 59, 1, 99-111.
Google Scholar
Marron J., Wand M. (1992), Exact Mean Integrated Squared Error, The Annals of Statistics, 20, 2, 712-736.
Google Scholar
Misztal M. (2014), On the Selected Methods for Evaluating Classification Models, Acta Universitatis Lodziensis Folia Oeconomica , 3 (302), 161-173.
Google Scholar
Ruzgas T., Drulyrè I. (2013), Kernel Density Estimation for Gaussian Mixture Models, Lithuanian Journal of Statistics, 52, 1, 14-21.
Google Scholar