Analysis of Household Income in Poland by Regions Based on Selected Income Distribution
DOI:
https://doi.org/10.18778/0208-6018.352.06Keywords:
household income, Dagum distribution, Zenga distribution, income inequality measuresAbstract
Research on income distributions focuses mainly on attempts to match theoretical distributions to the empirical income distribution and on the analysis of these distributions. The analysis results show that three‑parameter models very well approximate the income distribution of many countries. The Daguma distribution is recognised in the literature on income research as one of the best three parameter income distribution models. In 2010 Zenga proposed a new three‑parameter model for economic size distribution which possesses interesting statistical properties. The aim of this paper is to use the Dagum and Zenga model to analyze the distribution of Polish household income by regions. The D’Addario invariant methods and the maximum likelihood method were used to estimate the density function parameters. The calculations presented in the paper has been based on the individual data coming from the random sample obtained within the Household Budget Survey by regions by the Central Statistical Office in 2016. The article presents income inequality measures based on the considered models. The results of the calculations confirm that Zenga distribution is a good income distribution model which can be applied to analyze the income households of the Polish population.
Downloads
References
Arcagni A., Porro F. (2013), On the parameters of Zenga distribution, „Statistical Methods & Applications”, nr 22(3), s. 285–303.
Google Scholar
DOI: https://doi.org/10.1007/s10260-012-0219-y
Brzeziński M. (2013), Parametric modelling of income distribution in Central and Eastern Europe, „Central European Journal of Economic Modelling and Econometrics”, nr 35, s. 207–230.
Google Scholar
Ćwiek M., Ulman P. (2019), Income and Poverty in Households in Selected European Countries, „Acta Universitatis Lodziensis. Folia Oeconomica”, t. 6, nr 345, s. 7–25.
Google Scholar
DOI: https://doi.org/10.18778/0208-6018.345.01
Dagum C. (1977), A New Model of Personal Income Distribution. Specification and Estimation, „Economie Applique”, t XXX, nr 3, s. 413–436.
Google Scholar
Jędrzejczak A. (1993), Application of the Dagum distribution in the analysis of income distributions in Poland, „Acta Universitatis Lodziensis. Folia Oeconomica”, t. 131, s. 103–112.
Google Scholar
Jędrzejczak A. (2006), The characteristic of theoretical income distributions and their application to the analysis of wage distributions in Poland by regions, „Acta Universitatis Lodziensis. Folia Oeconomica”, t. 196, s. 183–198.
Google Scholar
Jędrzejczak A., Trzcińska K. (2018), Application of the Zenga distribution to the analysis of household income in Poland by socio‑economic group, „Statistica & Applicazioni”, t. 16, nr 2, s. 123–140.
Google Scholar
Kleiber C., Kotz S. (2003), Statistical Size Distributions in Economics and Actuarial Sciences, Wiley, Hoboken.
Google Scholar
DOI: https://doi.org/10.1002/0471457175
Kordos J. (1968), Metody matematyczne badania i analizy rozkładów dochodów ludności, Główny Urząd Statystyczny, Warszawa.
Google Scholar
Kordos J. (1973), Metody analizy i prognozowania rozkładów płac i dochodów ludności, Główny Urząd Statystyczny, Warszawa.
Google Scholar
Kot S. M. (1999), Analiza ekonometryczna kształtowania się płac w Polsce w okresie transformacji, Wydawnictwo Naukowe PWN, Warszawa–Kraków.
Google Scholar
Kot S. M. (2000), Ekonometryczne modele dobrobytu, Wydawnictwo Naukowe PWN, Warszawa–Kraków.
Google Scholar
Lange O. (1967), Wstęp do ekonometrii, Państwowe Wydawnictwo Naukowe, Warszawa.
Google Scholar
Łukasiewicz P., Orłowski A. (2004), Probabilistic Models of Income Distributions, „PhysicaA”, nr 344, s. 146–151.
Google Scholar
DOI: https://doi.org/10.1016/j.physa.2004.06.106
Ostasiewicz K. (2013), Adekwatność wybranych rozkładów teoretycznych dochodów w zależności od metody aproksymacji, „Przegląd Statystyczny”, t. 60, cz. 4, s. 499–521.
Google Scholar
Polisicchio M. (2008), The continuous random variable with uniform point inequality measure, „Statistica & Applicazioni”, t. 6, nr 2, s. 137–151.
Google Scholar
Porro F. (2015), Zenga Distribution and Inequality Ordering, „Communications in Statistics, Theory and Methods”, nr 44(18), s. 3967–3977.
Google Scholar
DOI: https://doi.org/10.1080/03610926.2013.819921
Ulman P. (2015), Income of household members in Poland, „Folia Oeconomica Cracoviensia”, t. LVI, s. 23–34.
Google Scholar
Vielrose E. (1960), Rozkład dochodów według wielkości, Polskie Wydawnictwo Gospodarcze, Warszawa.
Google Scholar
Zenga M. M. (2007), Inequality curve and inequality index based on the ratios between lower and upper arithmetic means, „Statistica & Applicazioni”, t. 5, nr 1, s. 3–28.
Google Scholar
Zenga M. M. (2010), Mixture of Polisicchio’s Truncated Pareto Distributions with Beta Weights, „Statistica & Applicazioni”, t. 8, nr 1, s. 3–25.
Google Scholar
Zenga M. M., Pasquazzi L., Zenga M. (2012), First Applications of a New Three Parameter Distribution for Non‑Negative Variables, „Statistica & Applicazioni”, t. 10, nr. 2, s. 131–149.
Google Scholar
Zenga M. M., Pasquazzi L., Polisicchio M., Zenga M. (2011), More on M. M. Zenga’s New Three‑Parameter Distribution for Non‑Negative Variables, „Statistica & Applicazioni”, t. 9, nr 1, s. 5–33.
Google Scholar