The Association of Body Temperature with Longevity: Insights from Historical Cohorts
DOI:
https://doi.org/10.18778/1898-6773.88.1.04Keywords:
age, aging, biomarker, body temperature, lifespan, longevity, survivalAbstract
Effective thermoregulation is crucial for maintaining homeostasis. Previous research has suggested a link between lower steady-state body temperature and longevity, particularly in physically healthy, nonobese older adults. However, the exact mechanisms behind this relationship remain unclear. Despite the physiological insights gained from studies on body temperature, limited attention has been given to its potential role as a biomarker of longevity in physically healthy older populations. This study aimed to evaluate the relationship between body temperature and longevity using historical data from two cohorts. The longitudinal cohort consisted of 142 individuals, followed for 25 years beginning at age 45, while the cross-sectional cohort included 204 individuals stratified into four lifespan categories. To examine agerelated trends in body temperature, Page’s test was employed, and ordinal regression was used. The analysis revealed a significant decrease in body temperature in women with age, while men showed no significant change. The cross-sectional analysis indicated a trend toward lower body temperatures in individuals with longer lifespans. Lower body temperature may reflect a reduced metabolic rate, thereby mitigating oxidative stress and molecular damage, both of which are known to drive aging and limit lifespan. Furthermore, lower body temperatures may signal a favorable inflammatory profile, which could translate into slower aging and increased survival. However, the observed sex-specific differences in thermoregulatory patterns raise important questions about the role of hormonal influences, such as estrogen levels. Overall, these findings suggest that lower lifetime steady-state body temperature may be a biomarker of healthy aging and longevity, warranting further exploration of its mechanistic underpinnings.
Downloads
References
Agnelli G, Belch JJF, Baumgartner I, Giovas P, Hoffmann U. 2020. Morbidity and mortality associated with atherosclerotic peripheral artery disease: A systematic review. Atherosclerosis 293:94–100. https://doi.org/10.1016/j.atherosclerosis.2019.09.012
View in Google Scholar
DOI: https://doi.org/10.1016/j.atherosclerosis.2019.09.012
Anderson RM, Weindruch R. 2010. Metabolic reprogramming, caloric restriction and aging. Trends Endocrinol Metab 21:134–41. https://doi.org/10.1016/j.tem.2009.11.005
View in Google Scholar
DOI: https://doi.org/10.1016/j.tem.2009.11.005
Arai Y, Martin-Ruiz CM, Takayama M, Abe Y, Takebayashi T, Koyasu S, Suematsu M, Hirose N, von Zglinicki T. 2015. Inflammation, but not telomere length, predicts successful ageing at extreme old age: A longitudinal study of semi-supercentenarians. EBioMedicine 2:1549–58. https://doi.org/10.1016/j.ebiom.2015.07.029
View in Google Scholar
DOI: https://doi.org/10.1016/j.ebiom.2015.07.029
Åström DO, Forsberg B, Rocklöv J. 2011. Heat wave impact on morbidity and mortality in the elderly population: A review of recent studies. Maturitas 69:99–105. https://doi.org/10.1016/j.maturitas.2011.03.008
View in Google Scholar
DOI: https://doi.org/10.1016/j.maturitas.2011.03.008
Barquera S, Pedroza-Tobías A, Medina C, Hernández-Barrera L, Bibbins-Domingo K, Lozano R, Moran AE. 2015. Global Overview of the Epidemiology of Atherosclerotic Cardiovascular Disease. Arch Med Res 46:328–38. https://doi.org/10.1016/j.arcmed.2015.06.006
View in Google Scholar
DOI: https://doi.org/10.1016/j.arcmed.2015.06.006
Baum F, Musolino C, Gesesew HA, Popay J. 2021. New Perspective on Why Women Live Longer Than Men: An Exploration of Power, Gender, Social Determinants, and Capitals. Int J Environ Res Public Health 18:661. https://doi.org/10.3390/ijerph18020661
View in Google Scholar
DOI: https://doi.org/10.3390/ijerph18020661
Bayraktar E, Tasar PT, Binici DN, Karasahin O, Timur O, Sahin S. 2020. Relationship between Sarcopenia and Mortality in Elderly Inpatients. Eurasian J Med 52:29–33. https://doi.org/10.5152/eurasianjmed.2020.19214
View in Google Scholar
DOI: https://doi.org/10.5152/eurasianjmed.2020.19214
Borysławski K, Chmielowiec K, Chmielewski P, Chmielowiec J. 2015. Zmiany z wiekiem wybranych cech antropometrycznych, fizjologicznych i biochemicznych oraz ich związek z długością życia mężczyzn i kobiet. Monographs of Physical Anthropology 2:1–224. Available at: http://antropologia.upwr.edu.pl/wp-content/uploads/mpa_vol2_2015.pdf [Accessed 11 March 2025]
View in Google Scholar
Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. 2019. From discoveries in ageing research to therapeutics for healthy ageing. Nature 571:183–92. https://doi.org/10.1038/s41586-019-1365-2
View in Google Scholar
DOI: https://doi.org/10.1038/s41586-019-1365-2
Carlsson H, Ivimey-Cook E, Duxbury EML, Edden N, Sales K, Maklakov AA. 2021. Ageing as “early-life inertia”: Disentangling life-history trade-offs along a lifetime of an individual. Evol Lett 5:551–64. https://doi.org/10.1002/evl3.254
View in Google Scholar
DOI: https://doi.org/10.1002/evl3.254
Carrillo AE, Flouris AD. 2011. Caloric restriction and longevity: effects of reduced body temperature. Ageing Res Rev 10:153–62. https://doi.org/10.1016/j.arr.2010.10.001
View in Google Scholar
DOI: https://doi.org/10.1016/j.arr.2010.10.001
Chen BH, Marioni RE, Colicino E, Peters MJ, Ward-Caviness CK, Tsai PC, Roetker NS, Just AC, Demerath EW, Guan W, Bressler J, Fornage M, Studenski S, Vandiver AR, Moore AZ, Tanaka T, Kiel DP, Liang L, Vokonas P, Schwartz J, Lunetta KL, Murabito JM, Bandinelli S, Hernandez DG, Melzer D, Nalls M, Pilling LC, Price TR, Singleton AB, Gieger C, Holle R, Kretschmer A, Kronenberg F, Kunze S, Linseisen J, Meisinger C, Rathmann W, Waldenberger M, Visscher PM, Shah S, Wray NR, McRae AF, Franco OH, Hofman A, Uitterlinden AG, Absher D, Assimes T, Levine ME, Lu AT, Tsao PS, Hou L, Manson JE, Carty CL, LaCroix AZ, Reiner AP, Spector TD, Feinberg AP, Levy D, Baccarelli A, van Meurs J, Bell JT, Peters A, Deary IJ, Pankow JS, Ferrucci L, Horvath S. 2016. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging 8:1844–65. https://doi.org/10.18632/aging.101020
View in Google Scholar
DOI: https://doi.org/10.18632/aging.101020
Chen Z, Ding C, Chen K, Lu C, Li Q. 2024. Exploring the impact of inflammatory cytokines on alcoholic liver disease: a Mendelian randomization study with bioinformatics insights into potential biological mechanisms. Am J Drug Alcohol Abuse 50:643–58. https://doi.org/10.1080/00952990.2024.2402569
View in Google Scholar
DOI: https://doi.org/10.1080/00952990.2024.2402569
Chmielewski P. 2015. Wysokość ciała i miesiąc urodzenia a długość życia osób zmarłych w Polsce w latach 2004–2008. [pdf] Doctoral dissertation. Available at: https://ruj.uj.edu.pl/server/api/core/bitstreams/1ecd8760-57c6-4e5c-8f48-7f5a7498b52c/content [Accessed 11 March 2025]
View in Google Scholar
Chmielewski P. 2016. The relationship between adult stature and longevity: tall men are unlikely to outlive their short peers – evidence from a study of all adult deaths in Poland in the years 2004–2008. Anthropol Rev 79:439–60. https://doi.org/10.1515/anre-2016-0032
View in Google Scholar
DOI: https://doi.org/10.1515/anre-2016-0032
Chmielewski P. 2017. Rethinking modern theories of ageing and their classification: the proximate mechanisms and the ultimate explanations. Anthropol Rev 80:259–72. https://doi.org/10.1515/anre-2017-0021
View in Google Scholar
DOI: https://doi.org/10.1515/anre-2017-0021
Chmielewski P. 2018. Leukocyte count, systemic inflammation, and health status in older adults: a narrative review. Anthropol Rev 81:81–101. https://doi.org/10.2478/anre-2018-0007
View in Google Scholar
DOI: https://doi.org/10.2478/anre-2018-0007
Chmielewski PP. 2019. Human ageing, longevity and evolution: can ageing be programmed? Anthropol Rev 82:417–33. https://doi.org/10.2478/anre-2019-0032
View in Google Scholar
DOI: https://doi.org/10.2478/anre-2019-0032
Chmielewski PP. 2020. Human ageing as a dynamic, emergent and malleable process: from disease-oriented to health-oriented approaches. Biogerontology 21:125–30. https://doi.org/10.1007/s10522-019-09839-w
View in Google Scholar
DOI: https://doi.org/10.1007/s10522-019-09839-w
Chmielewski PP. 2022. Do taller people live longer? Evaluating the relationship between adult stature and longevity. Med J Cell Biol 10:176–83. https://doi.org/10.2478/acb-2022-0025
View in Google Scholar
DOI: https://doi.org/10.2478/acb-2022-0025
Chmielewski PP. 2024. The association between body height and longevity: evidence from a national population sample. Folia Morphol 83:139–45. https://doi.org/10.5603/FM.a2023.0005
View in Google Scholar
DOI: https://doi.org/10.5603/FM.a2023.0005
Chmielewski P, Borysławski K, Chmielowiec K, Chmielowiec J. 2015. Longitudinal and cross-sectional changes with age in selected anthropometric and physiological traits in hospitalized adults: and insight from the Polish Longitudinal Study of Aging (PLSA). Anthropol Rev 78:317–36. https://doi.org/10.1515/anre-2015-0025
View in Google Scholar
DOI: https://doi.org/10.1515/anre-2015-0025
Chmielewski P, Borysławski K. 2016. Understanding the links between month of birth, body height, and longevity: why some studies reveal that shorter people live longer – further evidence of seasonal programming from the Polish population. Anthropol Rev 79:375–95. https://doi.org/10.1515/anre-2016-0028
View in Google Scholar
DOI: https://doi.org/10.1515/anre-2016-0028
Chmielewski PP, Borysławski K, Chmielowiec K, Chmielowiec J, Strzelec B. 2016. The association between total leukocyte count and longevity: Evidence from longitudinal and cross-sectional data. Ann Anat 204:1–10. https://doi.org/10.1016/j.aanat.2015.09.002
View in Google Scholar
DOI: https://doi.org/10.1016/j.aanat.2015.09.002
Chmielewski P, Strzelec B, Chmielowiec J, Chmielowiec K, Borysławski K. 2017. Association of serum bilirubin with longevity: Evidence from a retrospective longitudinal study and cross-sectional data. Anthropol Rev 80:335–48. https://doi.org/10.1515/anre-2017-0024
View in Google Scholar
DOI: https://doi.org/10.1515/anre-2017-0024
Chmielewski PP, Strzelec B. 2018. Elevated leukocyte count as a harbinger of systemic inflammation, disease progression, and poor prognosis: a review. Folia Morphol 77:171–8. https://doi.org/10.5603/FM.a2017.0101
View in Google Scholar
DOI: https://doi.org/10.5603/FM.a2017.0101
Chmielewski PP, Kozieł S, Borysławski K. 2023. Do the short die young? Evidence from a large sample of deceased Polish adults. Anthropol Rev 86:77–90. https://doi.org/10.18778/1898-6773.86.1.07
View in Google Scholar
DOI: https://doi.org/10.18778/1898-6773.86.1.07
Chmielewski PP, Data K, Strzelec B, Farzaneh M, Anbiyaiee A, Zaheer U, Uddin S, Sheykhi-Sabzehpoush M, Mozdziak P, Zabel M, Dzięgiel P, Kempisty B. 2024. Human Aging and Age-Related Diseases: From Underlying Mechanisms to Pro-Longevity Interventions. Aging Dis 16:1–25. https://doi.org/10.14336/AD.2024.0280
View in Google Scholar
DOI: https://doi.org/10.14336/AD.2024.0280
Chmielewski PP, Strzelec B, Data K, Chmielowiec K, Mozdziak P, Kempisty B. 2025. Resting Body Temperature and Long-Term Survival in Older Adults at a Mental Health Center: Cross-Sectional and Longitudinal Data. J Clin Med. 14:713. https://doi.org/10.3390/jcm14030713
View in Google Scholar
DOI: https://doi.org/10.3390/jcm14030713
Collins DH, Prince DC, Donelan JL, Chapman T, Bourke AFG. 2023. Costs of reproduction are present but latent in eusocial bumblebee queens. BMC Biol 21:153. https://doi.org/10.1186/s12915-023-01648-5
View in Google Scholar
DOI: https://doi.org/10.1186/s12915-023-01648-5
Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R. 2009. Calorie restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–04. https://doi.org/10.1126/science.1173635
View in Google Scholar
DOI: https://doi.org/10.1126/science.1173635
Conti B. 2008. Considerations on temperature, longevity and aging. Cell Mol Life Sci 65:1626–30. https://doi.org/10.1007/s00018-008-7536-1
View in Google Scholar
DOI: https://doi.org/10.1007/s00018-008-7536-1
Davis JL, Moutinho V Jr, Panageas KS, Coit DG. 2016. A peripheral blood biomarker estimates probability of survival: the neutrophil–lymphocyte ratio in noncancer patients. Biomarkers in Medicine 10:953–57. https://doi.org/10.2217/bmm-2016-0103
View in Google Scholar
DOI: https://doi.org/10.2217/bmm-2016-0103
Di Francesco A, Deighan AG, Litichevskiy L, Chen Z, Luciano A, Robinson L, Garland G, Donato H, Vincent M, Schott W, Wright KM, Raj A, Prateek GV, Mullis M, Hill WG, Zeidel ML, Peters LL, Harding F, Botstein D, Korstanje R, Thaiss CA, Freund A, Churchill GA. 2024. Dietary restriction impacts health and lifespan of genetically diverse mice. Nature 634:684–92. https://doi.org/10.1038/s41586-024-08026-3
View in Google Scholar
DOI: https://doi.org/10.1038/s41586-024-08026-3
Diamond A, Lye CT, Prasad D, Abbott D. 2021. One size does not fit all: Assuming the same normal body temperature for everyone is not justified. PLoS One 16:e0245257. https://doi.org/10.1371/journal.pone.0245257
View in Google Scholar
DOI: https://doi.org/10.1371/journal.pone.0245257
Dodds RM, Syddall HE, Cooper R, Benzeval M, Deary IJ, Dennison EM, Der G, Gale CR, Inskip HM, Jagger C, Kirkwood TB, Lawlor DA, Robinson SM, Starr JM, Steptoe A, Tilling K, Kuh D, Cooper C, Sayer AA. 2014. Grip strength across the life course: normative data from twelve British studies. PLoS One 9:e113637. https://doi.org/10.1371/journal.pone.0113637
View in Google Scholar
DOI: https://doi.org/10.1371/journal.pone.0113637
Dolgin E. 2024. Why autoimmune disease is more common in women: X chromosome holds clues. Nature 626:466. https://doi.org/10.1038/d41586-024-00267-6
View in Google Scholar
DOI: https://doi.org/10.1038/d41586-024-00267-6
Dorling JL, Martin CK, Redman LM. 2020. Calorie restriction for enhanced longevity: The role of novel dietary strategies in the present obesogenic environment. Ageing Res Rev 64:101038. https://doi.org/10.1016/j.arr.2020.101038
View in Google Scholar
DOI: https://doi.org/10.1016/j.arr.2020.101038
Drenos F, Kirkwood TB. 2005. Modelling the disposable soma theory of ageing. Mech Ageing Dev 126:99–103. https://doi.org/10.1016/j.mad.2004.09.026
View in Google Scholar
DOI: https://doi.org/10.1016/j.mad.2004.09.026
Ferrucci L, Fabbri E. 2018. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol 15:505–22. https://doi.org/10.1038/s41569-018-0064-2
View in Google Scholar
DOI: https://doi.org/10.1038/s41569-018-0064-2
Ferrucci L, Levine ME, Kuo PL, Simonsick EM. 2018. Time and the Metrics of Aging. Circ Res 123:740–4. https://doi.org/10.1161/CIRCRESAHA.118.312816
View in Google Scholar
DOI: https://doi.org/10.1161/CIRCRESAHA.118.312816
Fontana L, Partridge L, Longo VD. 2010. Extending healthy life span-from yeast to humans. Science 328:321–6. https://doi.org/10.1126/science.1172539
View in Google Scholar
DOI: https://doi.org/10.1126/science.1172539
Franceschi C, Campisi J. 2014. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69:S4–9. https://doi.org/10.1093/gerona/glu057
View in Google Scholar
DOI: https://doi.org/10.1093/gerona/glu057
Gems D. 2022. The hyperfunction theory: An emerging paradigm for the biology of aging. Ageing Res Rev 74:101557. https://doi.org/10.1016/j.arr.2021.101557
View in Google Scholar
DOI: https://doi.org/10.1016/j.arr.2021.101557
Geneva II, Cuzzo B, Fazili T, Javaid W. 2019. Normal Body Temperature: A Systematic Review. Open Forum Infect Dis 6:ofz032. https://doi.org/10.1093/ofid/ofz032
View in Google Scholar
DOI: https://doi.org/10.1093/ofid/ofz032
Giacomello E, Toniolo L. 2021. The Potential of Calorie Restriction and Calorie Restriction Mimetics in Delaying Aging: Focus on Experimental Models. Nutrients 13:2346
View in Google Scholar
DOI: https://doi.org/10.3390/nu13072346
Greenhill C. 2024. The complex effects of dietary restriction on longevity and health. Nat Rev Endocrinol 20:697. https://doi.org/10.3390/nu13072346
View in Google Scholar
DOI: https://doi.org/10.1038/s41574-024-01051-2
Guerville F, De Souto Barreto P, Ader I, Andrieu S, Casteilla L, Dray C, Fazilleau N, Guyonnet S, Langin D, Liblau R, Parini A, Valet P, Vergnolle N, Rolland Y, Vellas B. 2020. Revisiting the Hallmarks of Aging to Identify Markers of Biological Age. J Prev Alzheimers Dis 7:56–64. https://doi.org/10.14283/jpad.2019.50
View in Google Scholar
DOI: https://doi.org/10.14283/jpad.2019.50
Hammers M, Richardson DS, Burke T, Komdeur J. 2013. The impact of reproductive investment and early-life environmental conditions on senescence: support for the disposable soma hypothesis. J Evol Biol 26:1999–2007. https://doi.org/10.1111/jeb.12204
View in Google Scholar
DOI: https://doi.org/10.1111/jeb.12204
He N, Zhang Y, Zhang L, Zhang S, Ye H. 2021. Relationship Between Sarcopenia and Cardiovascular Diseases in the Elderly: An Overview. Front Cardiovasc Med 8:743710. https://doi.org/10.3389/fcvm.2021.743710
View in Google Scholar
DOI: https://doi.org/10.3389/fcvm.2021.743710
He Y, Li Z, Niu Y, Duan Y, Wang Q, Liu X, Dong Z, Zheng Y, Chen Y, Wang Y, Zhao D, Sun X, Cai G, Feng Z, Zhang W, Chen X. 2024. Progress in the study of aging marker criteria in human populations. Front Public Health 12:1305303. https://doi.org/10.3389/fpubh.2024.1305303
View in Google Scholar
DOI: https://doi.org/10.3389/fpubh.2024.1305303
Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S. 2016. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circ Res 118:535–46. https://doi.org/10.1161/CIRCRESAHA.115.307611
View in Google Scholar
DOI: https://doi.org/10.1161/CIRCRESAHA.115.307611
Hoong CWS, Chua MWJ. 2021. SGLT2 Inhibitors as Calorie Restriction Mimetics: Insights on Longevity Pathways and Age-Related Diseases. Endocrinology 162:bqab079. https://doi.org/10.1210/endocr/bqab079
View in Google Scholar
DOI: https://doi.org/10.1210/endocr/bqab079
Jasienska G. 2009. Reproduction and lifespan: Trade-offs, overall energy budgets, intergenerational costs, and costs neglected by research. Am J Hum Biol 21:524–32. https://doi.org/10.1002/ajhb.20931
View in Google Scholar
DOI: https://doi.org/10.1002/ajhb.20931
Jasienska G, Bribiescas RG, Furberg AS, Helle S, Núñez-de la Mora A. 2017. Human reproduction and health: an evolutionary perspective. Lancet 390:510–20. https://doi.org/10.1016/S0140-6736(17)30573-1
View in Google Scholar
DOI: https://doi.org/10.1016/S0140-6736(17)30573-1
Keil G, Cummings E, de Magalhães JP. 2015. Being cool: how body temperature influences ageing and longevity. Biogerontology 16:383–97. https://doi.org/10.1007/s10522-015-9571-2
View in Google Scholar
DOI: https://doi.org/10.1007/s10522-015-9571-2
Kirkwood TB. 1977. Evolution of ageing. Nature 270:301–4. https://doi.org/10.1038/270301a0
View in Google Scholar
DOI: https://doi.org/10.1038/270301a0
Kirkwood TB, Holliday R. 1979. The evolution of aging and longevity. Proc R Soc Lond B Biol Sci 205:531–46. https://doi.org/10.1098/rspb.1979.0083
View in Google Scholar
DOI: https://doi.org/10.1098/rspb.1979.0083
Kirkwood TB, Rose MR. 1991. Evolution of senescence: late survival sacrificed for reproduction. Philos Trans R Soc Lond B Biol Sci 332:15–24. https://doi.org/10.1098/rstb.1991.0028
View in Google Scholar
DOI: https://doi.org/10.1098/rstb.1991.0028
Knutson KL. 2012. Does inadequate sleep play a role in vulnerability to obesity? Am J Hum Biol 24:361–71. https://doi.org/10.1002/ajhb.22219
View in Google Scholar
DOI: https://doi.org/10.1002/ajhb.22219
Kowald A, Palmer D, Secci R, Fuellen G. 2024. Healthy aging in times of extreme temperatures: Biomedical approaches. Aging Dis 15:601–11. https://doi.org/10.14336/AD.2023.0619
View in Google Scholar
DOI: https://doi.org/10.14336/AD.2023.0619
Lee HJ, Alirzayeva H, Koyuncu S, Rueber A, Noormohammadi A, Vilchez D. 2023. Cold temperature extends longevity and prevents disease-related protein aggregation through PA28γ-induced proteasomes. Nat Aging 3:546–66. https://doi.org/10.1038/s43587-023-00383-4
View in Google Scholar
DOI: https://doi.org/10.1038/s43587-023-00383-4
Lehmann G, Muradian KK, Fraifeld VE. 2013. Telomere length and body temperature-independent determinants of mammalian longevity? Front Genet 4:111. https://doi.org/10.3389/fgene.2013.00111
View in Google Scholar
DOI: https://doi.org/10.3389/fgene.2013.00111
Lemaître JF, Moorad J, Gaillard JM, Maklakov AA, Nussey DH. 2024. A unified framework for evolutionary genetic and physiological theories of aging. PLoS Biol 22:e3002513. https://doi.org/10.1371/journal.pbio.3002513
View in Google Scholar
DOI: https://doi.org/10.1371/journal.pbio.3002513
Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, Hou L, Baccarelli AA, Stewart JD, Li Y, Whitsel EA, Wilson JG, Reiner AP, Aviv A, Lohman K, Liu Y, Ferrucci L, Horvath S. 2018. An epigenetic biomarker of aging for lifespan and healthspan. Aging 10:573–91. https://doi.org/10.18632/aging.101414
View in Google Scholar
DOI: https://doi.org/10.18632/aging.101414
Li FX, Xu F, Li CC, Lei LM, Shan SK, Zheng MH, Lin X, Guo B, Tang KX, Duan JY, Wu YY, Cao YC, Liu JJ, Yuan LQ. 2024. Cold Exposure Alleviates T2DM Through Plasma-Derived Extracellular Vesicles. Int J Nanomedicine 19:10077–95. https://doi.org/10.2147/IJN.S441847
View in Google Scholar
DOI: https://doi.org/10.2147/IJN.S441847
Li Y, Tian X, Luo J, Bao T, Wang S, Wu X. 2024. Molecular mechanisms of aging and anti-aging strategies. Cell Commun Signal 22:285. https://doi.org/10.1186/s12964-024-01663-1
View in Google Scholar
DOI: https://doi.org/10.1186/s12964-024-01663-1
Longo VD, Mitteldorf J, Skulachev VP. 2005. Programmed and altruistic ageing. Nat Rev Genet 6:866–72. https://doi.org/10.1038/nrg1706
View in Google Scholar
DOI: https://doi.org/10.1038/nrg1706
Longo VD, Anderson RM. 2022. Nutrition, longevity and disease: From molecular mechanisms to interventions. Cell 185:1455–70. https://doi.org/10.1016/j.cell.2022.04.002
View in Google Scholar
DOI: https://doi.org/10.1016/j.cell.2022.04.002
Lu SH, Leasure AR, Dai YT. 2010. A systematic review of body temperature variations in older people. J Clin Nurs 19:4–16. https://doi.org/10.1111/j.1365-2702.2009.02945.x
View in Google Scholar
DOI: https://doi.org/10.1111/j.1365-2702.2009.02945.x
Mahoney SA, Venkatasubramanian R, Darrah MA, Ludwig KR, VanDongen NS, Greenberg NT, Longtine AG, Hutton DA, Brunt VE, Campisi J, Melov S, Seals DR, Rossman MJ, Clayton ZS. 2024. Intermittent supplementation with fisetin improves arterial function in old mice by decreasing cellular senescence. Aging Cell 23:e14060. https://doi.org/10.1111/acel.14060
View in Google Scholar
DOI: https://doi.org/10.1111/acel.14060
Maklakov AA, Chapman T. 2019. Evolution of ageing as a tangle of trade-offs: energy versus function. Proc Biol Sci 286:20191604. https://doi.org/10.1098/rspb.2019.1604
View in Google Scholar
DOI: https://doi.org/10.1098/rspb.2019.1604
Martin-Ruiz C, Jagger C, Kingston A, Collerton J, Catt M, Davies K, Dunn M, Hilkens C, Keavney B, Pearce SH, den Elzen WP, Talbot D, Wiley L, Bond J, Mathers JC, Eccles MP, Robinson L, James O, Kirkwood TB, von Zglinicki T. 2011. Assessment of a large panel of candidate biomarkers of ageing in the Newcastle 85+ study. Mech Ageing Dev 132:496–502. https://doi.org/10.1016/j.mad.2011.08.001
View in Google Scholar
DOI: https://doi.org/10.1016/j.mad.2011.08.001
McGann KP, Marion GS, Camp L, Spangler JG. 1993. The influence of gender and race on mean body temperature in a population of healthy older adults. Arch Fam Med 2:1265–7. https://doi.org/10.1001/archfami.2.12.1265
View in Google Scholar
DOI: https://doi.org/10.1001/archfami.2.12.1265
Mitchell SE, Simpson M, Coulet L, Gouedard S, Hambly C, Morimoto J, Allison DB, Speakman JR. 2024. Reproduction has immediate effects on female mortality, but no discernible lasting physiological impacts: A test of the disposable soma theory. Proc Natl Acad Sci 121:e2408682121. https://doi.org/10.1073/pnas.2408682121
View in Google Scholar
DOI: https://doi.org/10.1073/pnas.2408682121
Mullington JM, Simpson NS, Meier-Ewert HK, Haack M. 2010. Sleep loss and inflammation. Best Pract Res Clin Endocrinol Metab 24:775–84. https://doi.org/10.1016/j.beem.2010.08.014
View in Google Scholar
DOI: https://doi.org/10.1016/j.beem.2010.08.014
Nilsson G, Hedberg P, Öhrvik J. 2014. White blood cell count in elderly is clinically useful in predicting long-term survival. J Aging Res 2014:475093. https://doi.org/10.1155/2014/475093
View in Google Scholar
DOI: https://doi.org/10.1155/2014/475093
Obermeyer Z, Samra JK, Mullainathan S. 2017. Individual differences in normal body temperature: longitudinal big data analysis of patient records. BMJ 359:j5468. https://doi.org/10.1136/bmj.j5468
View in Google Scholar
DOI: https://doi.org/10.1136/bmj.j5468
Öngel ME, Yıldız C, Akpınaroğlu C, Yilmaz B, Özilgen M. 2021. Why women may live longer than men do? A telomere-length regulated and diet-based entropic assessment. Clin Nutr 40;1186–91. https://doi.org/10.1016/j.clnu.2020.07.030
View in Google Scholar
DOI: https://doi.org/10.1016/j.clnu.2020.07.030
Page EB. 1963. Ordered Hypotheses for Multiple Treatments: A Significance Test for Linear Ranks. Journal of the American Statistical Association 58:216–30. https://doi.org/10.2307/2282965
View in Google Scholar
DOI: https://doi.org/10.1080/01621459.1963.10500843
Palani SN, Sellegounder D, Wibisono P, Liu Y. 2023. The longevity response to warm temperature is neurally controlled via the regulation of collagen genes. Aging Cell 22:e13815. https://doi.org/10.1111/acel.13815
View in Google Scholar
DOI: https://doi.org/10.1111/acel.13815
Picca A, Pesce V, Lezza AMS. 2017. Does eating less make you live longer and better? An update on calorie restriction. Clin Interv Aging 12:1887–902. https://doi.org/10.2147/CIA.S126458
View in Google Scholar
DOI: https://doi.org/10.2147/CIA.S126458
Proctor MJ, McMillan DC, Horgan PG, Fletcher CD, Talwar D, Morrison DS. 2015. Systemic inflammation predicts all-cause mortality: a Glasgow inflammation outcome study. PLoS One 10:e0116206. https://doi.org/10.1371/journal.pone.0116206
View in Google Scholar
DOI: https://doi.org/10.1371/journal.pone.0116206
Rikke BA, Johnson TE. 2004. Lower body temperature as a potential mechanism of life extension in homeotherms. Exp Gerontol 39:927–30. https://doi.org/10.1016/j.exger.2004.03.020
View in Google Scholar
DOI: https://doi.org/10.1016/j.exger.2004.03.020
Roth GS, Lane MA, Ingram DK, Mattison JA, Elahi D, Tobin JD, Muller D, Metter EJ. 2002. Biomarkers of caloric restriction may predict longevity in humans. Science 297:811. https://doi.org/10.1126/science.1071851
View in Google Scholar
DOI: https://doi.org/10.1126/science.1071851
Ruggiero C, Metter EJ, Cherubini A, Maggio M, Sen R, Najjar SS, Windham GB, Ble A, Senin U, Ferrucci L. 2007. White blood cell count and mortality in the Baltimore Longitudinal Study of Aging. J Am Coll Cardiol 49:1841–50. https://doi.org/10.1016/j.jacc.2007.01.076
View in Google Scholar
DOI: https://doi.org/10.1016/j.jacc.2007.01.076
Ruggiero C, Metter EJ, Melenovsky V, Cherubini A, Najjar SS, Ble A, Senin U, Longo DL, Ferrucci L. 2008. High basal metabolic rate is a risk factor for mortality: the Baltimore Longitudinal Study of Aging. J Gerontol A Biol Sci Med Sci 63:698–706. https://doi.org/10.1093/gerona/63.7.698
View in Google Scholar
DOI: https://doi.org/10.1093/gerona/63.7.698
Sayer AA, Kirkwood TB. 2015. Grip strength and mortality: a biomarker of ageing? Lancet 386:226–7. https://doi.org/10.1016/S0140-6736(14)62349-7
View in Google Scholar
DOI: https://doi.org/10.1016/S0140-6736(14)62349-7
Shapiro SS, Wilk MB. 1965. An analysis of variance test for normality (complete samples). Biometrika 52:591–611. https://doi.org/10.2307/2333709
View in Google Scholar
DOI: https://doi.org/10.1093/biomet/52.3-4.591
Simonsick EM, Meier HCS, Shaffer NC, Studenski SA, Ferrucci L. 2016. Basal body temperature as a biomarker of healthy aging. AGE 38:445–54. https://doi.org/10.1007/s11357-016-9952-8
View in Google Scholar
DOI: https://doi.org/10.1007/s11357-016-9952-8
Smith L, Yang L, Hamer M. 2019. Handgrip strength, inflammatory markers, and mortality. Scand J Med Sci Sports 29:1190–6. https://doi.org/10.1111/sms.13433
View in Google Scholar
DOI: https://doi.org/10.1111/sms.13433
Soare A, Cangemi R, Omodei D, Holloszy JO, Fontana L. 2011. Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans. Aging 3:374–9. https://doi.org/10.18632/aging.100280
View in Google Scholar
DOI: https://doi.org/10.18632/aging.100280
Speakman JR. 2020. Why does caloric restriction increase life and healthspan? The ‘clean cupboards’ hypothesis. Natl Sci Rev 7:1153–6. https://doi.org/10.1093/nsr/nwaa078
View in Google Scholar
DOI: https://doi.org/10.1093/nsr/nwaa078
Sultanova Z, Ivimey-Cook ER, Chapman T, Maklakov AA. 2021. Fitness benefits of dietary restriction. Proc Biol Sci 288:20211787. https://doi.org/10.1098/rspb.2021.1787
View in Google Scholar
DOI: https://doi.org/10.1098/rspb.2021.1787
Waalen J, Buxbaum JN. 2011. Is older colder or colder older? The association of age with body temperature in 18,630 individuals. J Gerontol A Biol Sci Med Sci 66:487–92. https://doi.org/10.1093/gerona/glr001
View in Google Scholar
DOI: https://doi.org/10.1093/gerona/glr001
Waziry R, Ryan CP, Corcoran DL, Huffman KM, Kobor MS, Kothari M, Graf GH, Kraus VB, Kraus WE, Lin DTS, Pieper CF, Ramaker ME, Bhapkar M, Das SK, Ferrucci L, Hastings WJ, Kebbe M, Parker DC, Racette SB, Shalev I, Schilling B, Belsky DW. 2023. Effect of long-term caloric restriction on DNA methylation measures of biological aging in healthy adults from the CALERIE trial. Nat Aging 3:248–57. https://doi.org/10.1038/s43587-022-00357-y
View in Google Scholar
DOI: https://doi.org/10.1038/s43587-022-00357-y
Ziomkiewicz A, Sancilio A, Galbarczyk A, Klimek M, Jasienska G, Bribiescas RG. 2016. Evidence for the Cost of Reproduction in Humans: High Lifetime Reproductive Effort Is Associated with Greater Oxidative Stress in Post-Menopausal Women. PLoS One 11:e0145753. https://doi.org/10.1371/journal.pone.0145753
View in Google Scholar
DOI: https://doi.org/10.1371/journal.pone.0145753
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.