Sexual dimorphism in the robusticity of long bones of infants and young children

Authors

  • Anna Coussens Department of Anatomical Sciences, University of Adelaide Medical School, SA 5005, Australia
  • Tim Anson Department of Anatomical Sciences, University of Adelaide Medical School, SA 5005, Australia
  • Rachel M. Norris Department of Anatomical Sciences, University of Adelaide Medical School, SA 5005, Australia
  • Maciej Henneberg Department of Anatomical Sciences, University of Adelaide Medical School, SA 5005, Australia

DOI:

https://doi.org/10.18778/1898-6773.65.01

Keywords:

male, female, mandible, humerus, femur

Abstract

It is difficult to determine the sex of subadult skeletal remains because there is a little sexual dimorphism present pre-pubertally. In a historic sample of 24 children aged 0-4 years from St. Mary's Anglican Church,Marion, South Australia, the robustness of femora and of humeri was correlated with sexually dimorphic mandibular morphology. Ratios of midshaft circumference to diaphyseal length of humeri and femora and the ratio of minimum circumference to diaphyseal length of the humerus showed correlation with sex determined by mandibular morphology, male indices being greater than the female ones. The humerus midshaft circumference index showed the greatest difference between sexes (P value=0.0002). The results need confirmation on known-sex skeletal remains, but for the moment this robusticity dimorphism seems to be a new discovery for osteological practice.

Downloads

Download data is not yet available.

References

BASS W.M., 1987, Forensic anthropology: The American experience [in:] Death, Decay and Reconstruction: Approaches to Archaeology and Forensic Science, A. Boddington, A.N. Garland, R.C. Janaway (eds.), Manchester University Press, Manchester, pp. 225-237
View in Google Scholar

BLACK T.K., 1978, A new method for assessing the sex of fragmentary skeletal remains: Femoral shaft circumference, Am. J. Phys. Anthropol., 48, 227-232
View in Google Scholar DOI: https://doi.org/10.1002/ajpa.1330480217

CIPOLLARO M., G. DI BERNADO, G. GALANO, U. GALDERISI, F. GUARINO, F. ANELINI, A. CASCINO, 1998, Ancient DNA in human bone remains from Pompeii archaeological site, Biochem. Biophys. Res. Commun., 247, 901-904
View in Google Scholar DOI: https://doi.org/10.1006/bbrc.1998.8881

FAERMAN M, G. KAHILA, P. SMITH, C. GREENBLATT, L. STAGER, D. FILON, A. OPPENHEIM, 1997, DNA analysis reveals the sex of infanticide victims, Nature 385, 212-213
View in Google Scholar DOI: https://doi.org/10.1038/385212a0

FRANCIS C.C., 1939, The appearance of centres of ossification from birth to five years, Am. J. Phys. Anthropol., 24, 273-299
View in Google Scholar DOI: https://doi.org/10.1002/ajpa.1330240316

HUNT D.R., 1990, Sex determination in the subadult ilia: An indirect test of Weaver’s non-metric sexing method, J. For. Sci., 35, 881-885
View in Google Scholar DOI: https://doi.org/10.1520/JFS12900J

LOTH S.R, M. HENNEBERG, 2001, Sexually dimorphic mandibular morphology in the first few years of life, Am. J. Phys. Anthropol., 115, 179-186
View in Google Scholar DOI: https://doi.org/10.1002/ajpa.1067

MALINA R.M, C. BOUCHARD, 1991, Growth, Maturation and Physical Activity, Human Kinetics Books, Champaign
View in Google Scholar

MOLLESON T., K. CRUSE, 1998, Some sexually dimorphic feature of the human juvenile skull and their value in sex determination in immature skeletal remains, J. Arch. Sci. 25, 719-728
View in Google Scholar DOI: https://doi.org/10.1006/jasc.1997.0215

PALMIROTTA R., F. VERGINALLI, G. TOTA, P. BATTISTA, A. CAMA, S. CARMIELLO, L. CAPASSO, R. MARTIN-COSTANTINI, 1997, Use of a multiplex polymerase chain reaction in the sex typing of DNA extracted from archaeological bone. Int. J. Osteoarchaeology 7, 605-609
View in Google Scholar DOI: https://doi.org/10.1002/(SICI)1099-1212(199711/12)7:6<605::AID-OA365>3.0.CO;2-R

RATHBUN T.A, J.E. BUIKSTRA, 1984, Human Identification: Case studies in forensic anthropology, C.C. Thomas, Springfield
View in Google Scholar

RÖSING F.W., 1983, Sexing immature human skeletons, J. Hum. Evol., 12, 149-155
View in Google Scholar DOI: https://doi.org/10.1016/S0047-2484(83)80020-7

SAFONT S., A. MALGOSA, M. EULALIA SUBIRS, 2000, Sex assessment on the basis of long bone circumference, Am. J. Phys. Anthropol., 113, 317-328
View in Google Scholar DOI: https://doi.org/10.1002/1096-8644(200011)113:3<317::AID-AJPA4>3.0.CO;2-J

ST. HOYME L., M.Y. ISCAN, 1989, Determination of sex and race, [in:] Reconstruction of life from the skeleton, M.Y. Iscan, K.A.R. Kennedy (eds.), A.R. Liss, New York, pp. 66-69
View in Google Scholar

SCHEUER L., S. BLACK, 2000, Developmental Juvenile Osteology, Academic Press, London
View in Google Scholar DOI: https://doi.org/10.1016/B978-012624000-9/50004-6

SCHUTKOWSKI H., 1993, Sex determination of infant and juvenile skeletons: I. Morphogenetic features, Am. J. Phys. Anthropol., 90, 199-205
View in Google Scholar DOI: https://doi.org/10.1002/ajpa.1330900206

STEYN M., M. HENNEBERG, 1996, Skeletal growth of children from the iron age site at K2 (South Africa), Am. J. Phys. Anthropol., 100, 389- 396
View in Google Scholar DOI: https://doi.org/10.1002/(SICI)1096-8644(199607)100:3<389::AID-AJPA6>3.0.CO;2-P

SUNDICK R.I., 1977, Age and sex determination of subadult skeletons, J. For. Sci., 22, 141-144
View in Google Scholar DOI: https://doi.org/10.1520/JFS10377J

UBELAKER D.H., 1989, Human Skeletal Remains, 2nd edn., Taraxacum Press, Washington
View in Google Scholar

WEAVER D.S., 1980, Sex differences in the ilia of a known sex and age sample of fetal and infant skeletons, Am. J. Phys. Anthropol., 52, 191-195
View in Google Scholar DOI: https://doi.org/10.1002/ajpa.1330520205

Downloads

Published

2002-06-30

How to Cite

Coussens, A., Anson, T., Norris, R. M., & Henneberg, M. (2002). Sexual dimorphism in the robusticity of long bones of infants and young children. Anthropological Review, 65, 3–16. https://doi.org/10.18778/1898-6773.65.01

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 4 > >>