Body composition and physical performance of Slovak Ice hockey players with different training approach during pre-season preparation
DOI:
https://doi.org/10.2478/anre-2018-0033Keywords:
team sports, individualization, training, bioimpedance analysis, sport performanceAbstract
The pre-season preparation aim is to improve the components of physical performance through the changes in training intensity, gradual increment in volume, variation in training frequency and optimizing the body composition. The problem in team sports is the lack of individualization, because most coaches in team sports focus their training on the group and not on improving each player’s strengths and weaknesses. The aim of this study is to identify differences in the body composition and physical performance of young ice-hockey players (15-18 years) with different pre-season training approaches (collective vs. individual). This longitudinal study monitored 13 ice-hockey players with collective training and 8 ice-hockey players with individual training during their pre-season preparation. Body composition was measured by bioimpedance analyzer BIA 101 (Akern, S.R.L.) and the Myotest PRO determined player physical performance in power, force and velocity. Performance and body composition comparisons showed gradual increase in the differences between the two studied groups during the training process.
This increase escalated to significant differences in the final output test results and was especially noted in the upper limbs power and force (p=0.016; p<0.001) and lower limbs power and force (p=0.029; p=0.001) with better performance results by individual training approach. Stepwise linear regression also showed significant relationship between upper limbs power, resistance (p<0.001) and fat mass (p<0.001). The upper limbs force was significantly associated with intra-cellular (p<0.001) and extracellular water (p=0.026), body cell mass index (p<0.001), basal metabolic rate (p<0.001) and training approach (p<0.001), while the lower limbs power was significantly associated with total body water (p<0.001), training approach (p=0.033) and the pre-season preparation phase (p<0.001). In addition, the training approach (p<0.001), preparation phase (p<0.001), player position (p=0.012) and fat free mass (p<0.001) were significantly associated with lowers limb force. Our results indicate the importance of using an individual training approach and optimal body composition in physical performance progression.
Downloads
References
Andreoli A, Marfe G, Manzi V, Sinibaldi-Salimei P. 2012. Is body cell mass a predictive index of performance in male recreational long-distance runners? Sport Sci Health 8:47-50.
View in Google Scholar
Bogdanis GC, Nevill ME, Boobis, LH, Lakomy, HK.. 1996. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol 3:876-84.
View in Google Scholar
Bompa TO. 1994. Theory and methodology of training: the key to athletic performance. Kendall: Hunt.
View in Google Scholar
Burr JF, Jamnik RK, Baker J, Macpherson A, Gledhill N, Mcguire EJ. 2008. Relationship of physical fitness test results and hockey playing potential in elite-level ice hockey players. J Strength Cond Res 22:1535-43.
View in Google Scholar
Comstock BA, Solomon-Hill G, Flanagan SD, Earp SD, Luk HY, Dobbins KA, et al. 2011. Validity of the Myotest® in measuring force and power production in the squat and bench press. J Strenght Cond Res 25(8):2293-97.
View in Google Scholar
Cox MH, Miles DS, Verde TJ, Rhodes EC. 1995. Applied physiology of ice hockey. Sports Med 19:174-201.
View in Google Scholar
De Lorenzo A, Andreoli A, Serrano P, D`Orazio N, Cervelli, V, Volpe SL. 2003. Body cell mass measured by total body potassium in normal weight and obese men and women. J Am Coll Nutr 22(6):546-49.
View in Google Scholar
Dey SK, Bandyopadhyay A, Jana S, Chatterjee S. 2015. Assessment of body cell mass in Indian junior elite players (male) of different sports using bioelectrical impedance analysis method. MedicinaSportiva 11(2):2633-40.
View in Google Scholar
Dovalil, J. 2002. Výkon a tréningvesportu. Praha: Olympia, pp 332.
View in Google Scholar
Farlinger CM, Kruisselbrink DL, Fowles JR. 2007. Relationships of skating performance in competitive hockey players. J Strength Cond Res 21:915-22.
View in Google Scholar
Grasgruber P, Cacek, J. 2008. Sportovní geny. Brno: Computer Press, pp 480.
View in Google Scholar
Janot JM, Beltz NM, Dalleck LD. 2015. Multiple off-ice performance variables predict on-ice skating performance in male and female division III ice hockey players. J Sports Sci Med 14:522-9.
View in Google Scholar
Knussmann R. 1988. Somatometrie. In: R Knussmann, editor. Handbuch der vergleichenden biologie des menschen Band I, Teil 1. Stuttgart: Fischer G; pp 232-85.
View in Google Scholar
Kramer WP, Volek JS, Clark KL, Gordon SE, Puhl SM, Koziris LP, et al. 1999. Influence of exercise training on physiological and performance changes with weight loss in men. Med Sci Sports Exerc 31(9):1320-29.
View in Google Scholar
Kraemer W. 2010. Construct validity of the Myotest® in measuring force and power production. J Strenght Cond Res 24: 1.
View in Google Scholar
Kumar S, Dutt A, Hemraj S, Bhat S, Manipadybhima B. 2012. Phase Angle Measurement in Healthy Human Subjects through Bio-Impedance Analysis Iran. J Basic Med Sci 15:1180-84.
View in Google Scholar
Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. 2004. Bioelectrical impedance analysis – part I: review of principles and methods. Clin Nutr 23(5):1226-43.
View in Google Scholar
Melchiorri G, Monteleone G, Andreoli A, Cella C, Sgroi M, De Lorenzo A. 2007. Body cell mass measured by bioelectrical impedance spectroscopy in professional football (soccer) players. J Sport Med Phys Fitness 47(4):408-12.
View in Google Scholar
Montgomery DL. 1988. Physiology of ice hockey. Sport Med 5: 99-126.
View in Google Scholar
Morgans R, Orme P, Anderson L, Drust B. 2014. Principles and practices of training for soccer. J Sport Health Sci 3:251-257.
View in Google Scholar
Ribeiro AS, Avelar A, Schoenfeld BJ, Ritti Dias RM, Altimari LR, Cyrino ES. 2014. Resistance training promotes increase in intracellular hydration in men and women. Eur J Sport Sci 6:578-85.
View in Google Scholar
Roczniok R, Stanula A, Maszczyk A, Mostowik A, Kowalczyk M, Fidos-Czuba O, Zajac A. 2016. Physiological, Physical and on-ice performance criteria for selection of elite ice hockey teams. Biol Sport 33(1):43-48.
View in Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Anthropological Review
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.