Optymalna alokacja próby w badaniu cechy drażliwej

Autor

  • Michał Bernardelli SGH Warsaw School of Economics, Institute of Econometrics, Probabilistic Methods Unit
  • Barbara Kowalczyk SGH Warsaw School of Economics, Institute of Econometrics, Mathematical Statistics Unit

DOI:

https://doi.org/10.18778/0208-6018.335.03

Słowa kluczowe:

alokacja optymalna, zmienna ukryta, algorytm EM, cecha drażliwa, pytania pośrednie, eksperyment z listą

Abstrakt

Pośrednie metody ankietowania stanowią podstawowe narzędzie stosowane w przypadku pytań drażliwych. Artykuł nawiązuje do nowej, pośredniej metody zaproponowanej w pracy Tiana i wsp. (2014) i dotyczy optymalnej alokacji próby między grupę badaną i kontrolną. W przypadku gdy alokacji dokonuje się w oparciu o estymatory metodą momentów, rozwiązanie optymalne nie nastręcza trudności i zostało podane w pracy Tiana i wsp. (2014). Jednak to estymacja metodą największej wiarogodności ma lepsze własności, w związku z czym wyznaczenie alokacji optymalnej na jej podstawie jest zadaniem, którego rozwiązanie wydaje się mieć większe znaczenie praktyczne. Zadanie to nie jest trywialne, gdyż w przypadku omawianej metody pośredniej drażliwa zmienna badana ma charakter ukryty i jest zmienną nieobserwowalną. Wzór explicite na wariancję estymatora największej wiarogodności nieznanej frakcji cechy drażliwej nie jest dostępny, a sam estymator wyznaczyć można, używając odpowiednich algorytmów numerycznych. Do określenia optymalnej alokacji próby w oparciu o estymatory NW wykorzystane zostały symulacje Monte Carlo oraz iteracyjny algorytm EM

Pobrania

Brak dostępnych danych do wyświetlenia.

Bibliografia

Imai K. (2011), Multivariate regression analysis for the item count technique, “Journal of the American Statistical Association”, vol. 106, no. 494, pp. 407–416.
Google Scholar

Kowalczyk B., Wieczorkowski R. (2017), Comparing proportions of sensitive items in two populations when using Poisson and negative binomial item count techniques, “Quantitative Methods in Economics”, vol. 18, no. 1, pp. 68–77.
Google Scholar

Kuha J., Jackson J. (2014), The item count method for sensitive survey questions: modeling criminal behavior, “Journal of the Royal Statistical Society: Series C”, vol. 63, no. 2, pp. 321–341.
Google Scholar

Tian G‑L., Tang M‑L., Wu Q., Liu Y. (2014), Poisson and negative binomial item count techniques for surveys with sensitive question, “Statistical Methods in Medical Research”, Pre‑published online on December 16, 2014, http://dx.doi.org/10.1177/0962280214563345.
Google Scholar

Tourangeau R., Yan T. (2007), Sensitive questions in surveys, “Psychological Bulletin”, vol. 133, no. 5, pp. 859–883.
Google Scholar

Wolter F., Laier B. (2014), The Effectiveness of the Item Count Technique in Eliciting Valid Answers to Sensitive Questions. An Evaluation in the Context of Self‑Reported Delinquency, “Survey Research Methods”, vol. 8, no. 3, pp. 153–168.
Google Scholar

Opublikowane

2018-05-16

Jak cytować

Bernardelli, M., & Kowalczyk, B. (2018). Optymalna alokacja próby w badaniu cechy drażliwej. Acta Universitatis Lodziensis. Folia Oeconomica, 3(335), 35–47. https://doi.org/10.18778/0208-6018.335.03

Numer

Dział

Artykuł

Podobne artykuły

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.