Wykorzystanie grafu wiedzy w edukacji: przegląd literatury
DOI:
https://doi.org/10.18778/0208-6018.342.01Słowa kluczowe:
graf wiedzy, schemat wiedzy, Resource Description Framework, informacja, dane, wiedza, model, proces dydaktycznyAbstrakt
W nowoczesnych i rozwijających się ekonomicznych systemach zarządzane wiedzą (ZW) uważa się za jedną z najważniejszych czynności niemal w każdej organizacji. Proces ZW na uniwersytetach obejmuje procesy dydaktyczne, wśród których wyróżniamy proces indywidualizacji kształcenia. Taki proces wymaga przetworzenia dużej ilości informacji zarówno przez pracowników uniwersytetu, jak i przez studentów. W artykule zaproponowano graf wiedzy jako technologię, która ułatwia i usprawnia procesy ZW na uniwersytetach, oraz przedstawiono rozszerzony przegląd zjawiska grafu wiedzy.
Pobrania
Bibliografia
Blumauer A. (2014), From Taxonomies over Ontologies to Knowledge Graphs – The Semantic Puzzle, https://semantic‑web.com/2014/07/15/from‑taxonomies‑over‑ontologies‑to‑knowledge‑graphs [accessed: 17.02.2019].
Google Scholar
Bordes A., Usunier N., Garcia‑Duran A., Weston J., Yakhnenko O. (2013), Translating embeddings for modeling multi‑relational data, [in:] C. J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, K. Q. Weinberger (eds.), Proceedings of the Conference Advances in Neural Information Processing Systems 26 (NIPS 2013), pp. 2787–2795, http://papers.nips.cc/paper/5071‑translating‑embeddings‑for‑modeling‑multi‑relational‑data.pdf [accessed: 17.02.2019].
Google Scholar
Bordes A., Weston J., Collobert R., Bengio Y. (2011), Learning structured embeddings of knowledge bases, Twenty‑Fifth AAAI Conference on Artificial Intelligence, http://ronan.collobert.com/pub/matos/2011_knowbases_aaai.pdf [accessed: 1.07.2018].
Google Scholar
Chang K. W., Yih W. T., Yang B., Meek C. (2014), Typed tensor decomposition of knowledge bases for relation extraction, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1568–1579, http://www.aclweb.org/anthology/D14–1165 [accessed: 5.07.2018].
Google Scholar
Chowdhury F. R.R., Ma C., Islam M. R., Namaki M. H., Faruk M. O., Doppa J. R. (2017), Select‑and‑Evaluate: A Learning Framework for Large‑Scale Knowledge Graph Search, Asian Conference on Machine Learning, pp. 129–144, http://proceedings.mlr.press/v77/chowdhury17a/chowdhury17a.pdf [accessed: 17.02.2019].
Google Scholar
Cmap Software (2019), https://cmap.ihmc.us/ [accessed: 17.04.2019].
Google Scholar
Cui Q., Gao B., Bian J., Qiu S., Dai H., Liu T. Y. (2015), KNET: A general framework for learning word embedding using morphological knowledge, “ACM Transactions on Information Systems (TOIS)”, no. 34(1), https://arxiv.org/pdf/1407.1687.pdf [accessed: 17.02.2019].
Google Scholar
DBpedia (2017), DBpedia Version 2016–10, https://wiki.dbpedia.org/develop/datasets/dbpedia‑version–2016–10 [accessed: 17.04.2019].
Google Scholar
Galkin M., Auer S., Vidal M. E., Scerri S. (2017), Enterprise Knowledge Graphs: A Semantic Approach for Knowledge Management in the Next Generation of Enterprise Information Systems, Proceedings of the 19th International Conference on Enterprise Information Systems 2017, vol. 2, pp. 88–98, http://www.scitepress.org/Papers/2017/63252/63252.pdf [accessed: 17.02.2019].
Google Scholar
Gomez‑Perez J. M., Pan J. Z., Vetere G., Wu H. (2017), Enterprise knowledge graph: An introduction, [in:] J. Z. Pan, G. Vetere, J. M. Gomez-Perez and H. Wu (eds.), Exploiting linked data and knowledge graphs in large organisations, Springer, Cham, pp. 1–14.
Google Scholar
Jetschni J., Meister V. G. (2017), Schema engineering for enterprise knowledge graphs: A reflecting survey and case study, 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS), IEEE, pp. 271–277.
Google Scholar
Ji G., He S., Xu L., Liu K., Zhao J. (2015), Knowledge graph embedding via dynamic mapping matrix, Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, vol. 1, pp. 687–696, http://www.aclweb.org/anthology/P15–1067 [accessed: 9.07.2018].
Google Scholar
Lin Y., Liu Z., Sun M., Liu Y., Zhu X. (2015), Learning entity and relation embeddings for knowledge graph completion, Proceedings of the Twenty‑Ninth AAAI Conference on Artificial Intelligence, https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewFile/9571/9523 [accessed: 17.02.2019].
Google Scholar
Ma S., Ding J., Jia W., Wang K., Guo M. (2017), TransT: Type‑based multiple embedding representations for knowledge graph completion, [in:] Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, Cham, pp. 717–733, http://ecmlpkdd2017.ijs.si/papers/paperID314.pdf [accessed: 10.07.2018].
Google Scholar
Masuch L., Muszynski H., Raethlein B. (2014), Enterprise Knowledge Graph, www.slideshare.net/BenjaminRaethlein/enterprise‑knowledge‑graph–56858153 [accessed: 11.06.2018].
Google Scholar
Mikolov T., Chen K., Corrado G., Dean J. (2013a), Efficient estimation of word representations in vector space, https://arxiv.org/pdf/1301.3781.pdf [accesses: 17.02.2019].
Google Scholar
Mikolov T., Sutskever I., Chen K., Corrado G. S., Dean J. (2013b), Distributed representations of words and phrases and their compositionality, https://arxiv.org/abs/1310.4546 [accesses: 17.02.2019].
Google Scholar
Nickel M., Murphy K., Tresp V., Gabrilovich E. (2016), A review of relational machine learning for knowledge graphs, Proceedings of the Institute of Electrical and Electronics Engineers, no. 104(1), pp. 11–33, https://arxiv.org/abs/1503.00759 [accessed: 27.05.2018].
Google Scholar
Nickel M., Tresp V., Kriegel H. P. (2011), A Three‑Way Model for Collective Learning on Multi‑Relational Data, Proceedings of the 28th International Conference on Machine Learning, vol. 11, pp. 809–816, http://www.icml–2011.org/papers/438_icmlpaper.pdf [accessed: 8.07.2018].
Google Scholar
Paulheim H. (2016), Knowledge graph refinement: A survey of approaches and evaluation methods, “Semantic Web”, no. 8(3), pp. 489–508, www.semantic‑web‑journal.net/system/files/swj1167.pdf [accessed: 27.05.2018].
Google Scholar
Pirrò G. (2015), Explaining and suggesting relatedness in knowledge graphs, [in:] International Semantic Web Conference, [in:] M. Arenas, O. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. Groth, M. Dumontier, J. Heflin, K. Thirunarayan and S. Staab (eds.), The Semantic Web – ISWC 2015. ISWC 2015. Lecture Notes in Computer Science, vol. 9366. Springer, Cham, http://disi.unitn.it/~pavel/OM/articles/93660561.pdf [accessed: 17.02.2019].
Google Scholar
Pujara J., London B., Getoor L., Cohen W. W. (2015), Online Inference for Knowledge Graph Construction, Fifth International Workshop on Statistical Relational AI, www.semanticscholar.org [accessed: 27.05.2018].
Google Scholar
Singhal A. (2012), Introducing the Knowledge Graph: Things, not Strings, https://www.blog.google/products/search/introducing‑knowledge‑graph‑things‑not [accessed: 17.04.2019].
Google Scholar
Socher R., Chen D., Manning C. D., Ng A. (2013), Reasoning with neural tensor networks for knowledge base completion, [in:] C. J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani and K. Q. Weinberger (eds.), Proceedings of the conference Advances in neural information processing systems 26 (NIPS 2013), pp. 926–934, https://papers.nips.cc/paper/5028‑reasoning‑with‑neural‑tensor‑networks‑for‑knowledge‑base‑completion.pdf [accessed: 17.02.2019].
Google Scholar
Tian F., Gao B., Chen E. H., Liu T. Y. (2016), Learning better word embedding by asymmetric low‑rank projection of knowledge graph, “Journal of Computer Science and Technology”, no. 31(3), pp. 624–634, https://link.springer.com/content/pdf/10.1007/s11390–016–1651–5.pdf [accessed: 17.02.2019].
Google Scholar
Velampalli S., Jonnalagedda M. V. (2017), Graph based knowledge discovery using map reduce and subdue algorithm, “Data & Knowledge Engineering”, no. 111, pp. 103–113.
Google Scholar
Wang Z., Zhang J., Feng J., Chen Z. (2014), Knowledge graph embedding by translating on hyper planes, Proceedings of the Twenty‑Eighth AAAI Conference on Artificial Intelligence, https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/viewFile/8531/8546 [accessed: 17.02.2019].
Google Scholar
Wikidata (2018), https://www.wikidata.org/wiki/Wikidata: Main_Page [accessed: 17.04.2019].
Google Scholar
Wikimedia Commons (2019), https://commons.wikimedia.org/wiki/Main_Page [accessed: 17.04.2019].
Google Scholar
World Wide Web Consortium W3C (2014), Resource Description Framework, https://www.w3.org/2001/sw/wiki/RDF [accessed: 17.04.2019].
Google Scholar
World Wide Web Consortium W3C (2019), https://www.w3.org/ [accessed: 17.04.2019].
Google Scholar
Wu Y., Pan J., Lu P., Lin K., Yu Z. (2017), Knowledge Graph Embedding Translation Based on Constraints, “Journal of Information Hiding and Multimedia Signal Processing, Ubiquitous International”, no. 8(5), pp. 1119–1131, bit.kuas.edu.tw/~jihmsp/2017/vol8/JIH‑MSP–2017–05–016.pdf [accessed: 17.02.2019].
Google Scholar
Xu C., Bai Y., Bian J., Gao B., Wang G., Liu X., Liu T. Y. (2014), Rc‑net: A general framework for incorporating knowledge into word representations, Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, ACM, pp. 1219–1228, http://ylbai.asiteof.me/km0814‑xu.pdf [accessed: 17.02.2019].
Google Scholar
Yu M., Dredze M. (2014), Improving lexical embeddings with semantic knowledge, Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, vol. 2, pp. 545–550, www.aclweb.org/anthology/P14–2089 [accessed: 17.02.2019].
Google Scholar