Application of Hölder Function to Expansion Intensity of Spatial Phenomena Analysis
DOI:
https://doi.org/10.18778/0208-6018.335.04Keywords:
stochastic process, Hurst exponent, Hölder function, spatial modellingAbstract
The development of methods describing time series using stochastic processes took place in the 20th century. Among others, stationary processes were modelled with Hurst exponent, whereas non‑stationary processes with Hölder function. The characteristic feature of this type of processes is the analysis of the memory present in the time series. At the turn of the 21st century interest in statistics and spatial econometrics, as well as analyses carried out within the new economic geography arose. In this article, we have proposed the implementation of methods taken from the analysis of time series in the modelling of spatial data and the application of selected measures in studying the intensity of expansion in spatial phenomena. As the intensity measure we use Hölder point exponents. The article is composed of two parts. The first one contains the description of study methodology, the second – examples of application.
Downloads
References
Ayache A., Lévy‑Véhel J. (1999), Generalized Multifractional Brownian Motion: Definition and Preliminary Results, [in:] M. Dekking, J. Lévy‑Véhel, E. Lutton, C. Tricot (eds.), Fractals: Theory and Applications in Engineering, Springer‑Verlag, New York.
Google Scholar
Ayache A., Taqqu M.S. (2004), Multifractional processes with random exponent, “Stochastic Processes and their Applications”, no. 111(1), pp. 119–156.
Google Scholar
Baltagi B.H. (2005), Econometric Analysis of Panel Data, John Wiley & Sons, New York.
Google Scholar
Barrière O. (2007), Synthèse et estimation de mouvements browniens multifractionnaires et autres processus à régularité prescrite, Définition du processus autorégulé multifractionnaire et applications. PhD thesis, IRCCyN.
Google Scholar
Bass F. (1969), A New product growth for model consumer durables, “Managment Science”, no. 15(5), pp. 215–227.
Google Scholar
Box G.E.P., Jenkins G.M. (1976), Time series analysis forecasting and control, Holden‑Day, San Francisco.
Google Scholar
Daoudi K., Lévy‑Véhel J., Meyer Y. (1998), Construction of continuous functions with prescribed local regularity, “Journal of Constructive Approximations”, no. 014(03), pp. 349–385.
Google Scholar
Domański R. (2002), Gospodarka przestrzenna, Wydawnictwo Naukowe PWN, Warszawa.
Google Scholar
Echelard A., Barrière O., Lévy‑Véhel J. (2010), Terrain modelling with multifractional Brownian motion and self‑regulating processe, “ICCVG”, no. 6374, pp. 342–351.
Google Scholar
Falconer K.J., Lévy‑Véhel J. (2008), Multifractional, multistable and other processes with prescribed local form, “Journal of Theoretical Probability”, https://link.springer.com/article/10.1007/s10959–008–0147–9 [accessed: .....].
Google Scholar
Fuller W.A. (1996), Introduction to Statistical Time Series, Wiley, New York.
Google Scholar
Getis A., Mur J., Zoller H. (2004), Spatial Econometrics and Spatial Statistics, Palgrave Macmillan, New York.
Google Scholar
Granger C.W.J., Mizon G.E. (1994), Nonstationary Time Series Analysis and Cointegration, Oxford University Press, New York.
Google Scholar
Hagerstrand T. (1952), The propagation and innovation waves, “Lund Studies in Geography”, no. 4, Lund, Gleerup.
Google Scholar
Hsiao C. (2003), Analysis of Panel Data, Cambridge University Press, Cambridge.
Google Scholar
Kopczewska K. (2007), Ekonometria i statystyka przestrzenna, Wydawnictwo CeDeWu, Warszawa.
Google Scholar
Krugman P.R. (1991), Geography and Trade, The MIT Press, Cambridge.
Google Scholar
Lévy‑Véhel J., Mendivil F. (2011), Multifractal and higher dimensional zeta functions, “Nonlinearity”, no. 24(1), pp. 259–276.
Google Scholar
Lévy‑Véhel J., Seuret S. (2004), The 2‑microlocal Formalism, Fractal Geometry and Applications, A Jubilee of Benoit Mandelbrot, “ Proceedings of Symposia in Pure Mathematics”, no. 72(2), pp. 153–215.
Google Scholar
Mandelbrot B.B. (1982), The Fractal Geometry of Nature, WH Freeman & Co, New York.
Google Scholar
Mastalerz‑Kodzis A. (2003), Modelowanie procesów na rynku kapitałowym za pomocą multifraktali, “Prace Naukowe”, Akademia Ekonomiczna im. Karola Adamieckiego w Katowicach, Katowice.
Google Scholar
Mastalerz‑Kodzis A. (2016), Algorytm modelowania danych przestrzennych o zadanej lokalnej regularności, [in:] J. Mika, M. Miśkiewicz‑Nawrocka (eds.), Metody i modele analiz ilościowych w ekonomii i zarządzaniu, Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach, Katowice.
Google Scholar
Matyas L., Sevestre P. (eds.) (2006), The Econometrics of Panel Data, Kluwer Academic Publishers, Dordrecht.
Google Scholar
Paelinck J.H.P., Klaassen L.H. (1983), Ekonometria przestrzenna, PWN, Warszawa.
Google Scholar
Peltier R.F., Lévy‑Véhel J. (1995), Multifractional Brownian Motion: Definition and Preliminary Results, INRIA Recquencourt, Rapport de recherche no. 2645.
Google Scholar
Perfect E., Tarquis A.M., Bird N.R.A. (2009), Accuracy of generalized dimensions estimated from grayscale images using the method of moments, “Fractals”, vol. 17, no. 3, pp. 351–363.
Google Scholar
Peters E.E. (1994), Fractal Market Analysis, John Wiley and Sons, New York.
Google Scholar
Suchecki B. (2010), Ekonometria przestrzenna, Wydawnictwo C.H. Beck, Warszawa.
Google Scholar
Zeliaś A. (ed.) (1991), Ekonometria przestrzenna, PWE, Warszawa.
Google Scholar
Downloads
Additional Files
- Ada_mapa_MSA2016
- APPLICATION OF HÖLDER FUNCTION TO EXPANSION INTENSITY OF SPATIAL PHENOMENA ANALYSIS_1.1
- APPLICATION OF HÖLDER FUNCTION TO EXPANSION INTENSITY OF SPATIAL PHENOMENA ANALYSIS_1.2
- APPLICATION OF HÖLDER FUNCTION TO EXPANSION INTENSITY OF SPATIAL PHENOMENA ANALYSIS_2
- APPLICATION OF HÖLDER FUNCTION TO EXPANSION INTENSITY OF SPATIAL PHENOMENA ANALYSIS_3.1
- APPLICATION OF HÖLDER FUNCTION TO EXPANSION INTENSITY OF SPATIAL PHENOMENA ANALYSIS_3.2
- APPLICATION OF HÖLDER FUNCTION TO EXPANSION INTENSITY OF SPATIAL PHENOMENA ANALYSIS_4