On Accuracy of Calibration Estimators Supported by Auxiliary Variables from Past Periods Based on Simulation Analyses

Authors

  • Tomasz Stachurski University of Economics in Katowice, Faculty of Management, Department of Statistics, Econometrics and Mathematics
  • Tomasz Żądło

DOI:

https://doi.org/10.18778/0208-6018.330.03

Keywords:

calibration estimators, small area estimation, longitudinal surveys

Abstract

In sample surveys there is often a need to estimate not only population characteristics, but subpopulation characteristics as well. We consider the problem of estimating the total value in domains (subpopulations). In this case, the Horvitz‑Thompson estimator could be used. Nevertheless, it does not use any additional information about population units, which are usually known. To increase estimation accuracy we propose to use calibration estimators with auxiliary variables from the current and past periods. In the simulation studies based on real and generated data, we show the influence of using auxiliary information from past periods on the accuracy, and compare properties of two calibration estimators of domain totals in longitudinal surveys.

Downloads

Download data is not yet available.

References

Białek J. (2014), Simulation study of an original price index formula, “Communications in Statistics – Simulation and Computation”, vol. 43, issue 2, pp. 285–297, http://www.tandfonline.com/doi/abs/10.1080/03610918.2012.700367.
Google Scholar

Deville J.C., Särndal C.E. (1992), Calibration estimators in survey sampling, “Journal of the American Statistical Association”, no. 87, pp. 376–382.
Google Scholar

Fattorini L. (2006), Applying the Horvitz‑Thompson criterion in complex designs: A computer ‑ intensive perspective for estimating inclusion probabilities, “Biometrika”, vol. 93(2), pp. 269–278.
Google Scholar

Gamrot W. (2014), Estimators for the Horvitz‑Thompson statistic based on some posterior distributions, “Mathematical Population Studies”, vol. 21(1), pp. 12–29.
Google Scholar

Krzciuk M.K. (2014), On the design accuracy of Royall’s predictor of domain total for longitudinal data, Conference Proceedings. 32nd International Conference on Mathematical Methods in Economics (MME 2014), Olomouc.
Google Scholar

R Development Core Team (2016), A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna.
Google Scholar

Rao J.N.K., Molina I . (2015), Small area estimation, 2nd ed., John Wiley & Sons, Hoboken, New Jersey.
Google Scholar

Särndal C. E. (1981), Frameworks for Inference in Survey Sampling with Applications to Small Area Estimation and Adjustment for Nonresponse, “Bulletin of the International Statistical Institute”, no. 49, pp. 494–513.
Google Scholar

Särndal C.E., Swensson B., Wretman J. (1992), Model Assisted Survey Sampling, Springer‑Verlag, New York.
Google Scholar

Singh A.C., Mohl C.A. (1996), Understanding calibration estimators in survey sampling, “Survey Methodology”, no. 22, pp. 107–115.
Google Scholar

Stukel D.M., Hidiroglou M.A., Särndal C.E. (1996), Variance estimation for calibration estimators: A comparison of jackknifing versus Taylor linearization, “Survey Methodology”, no. 22, pp. 177–125.
Google Scholar

Żądło T. (2011), On calibration estimators of subpopulation total for longitudinal data, “Acta Universitatis Lodziensis. Folia Oeconomica”, vol. 252, pp. 191–204.
Google Scholar

Żądło T. (2015), Statystyka małych obszarów w badaniach ekonomicznych. Podejście modelowe i mieszane, Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach, Katowice.
Google Scholar

Downloads

Published

2017-11-15

How to Cite

Stachurski, T., & Żądło, T. (2017). On Accuracy of Calibration Estimators Supported by Auxiliary Variables from Past Periods Based on Simulation Analyses. Acta Universitatis Lodziensis. Folia Oeconomica, 4(330), [39]-53. https://doi.org/10.18778/0208-6018.330.03

Issue

Section

Articles

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.