Equilibrium of Solow growth model with alternative trajectories of the number of workers

Authors

  • Katarzyna Filipowicz Jagiellonian University, Department of Mathematical Economics
  • Maciej Grodzicki
  • Tomasz Tokarski

DOI:

https://doi.org/10.18778/0208-6018.326.12

Keywords:

growth rate of the number of workers, equilibrium of Solow model

Abstract

The aim of the study is to examine the long-run equilibrium of Solow growth model with a modified assumption for a rate of employment growth. In the first case, it is assumed that the number of workers changes in the trajectory defined by the logistic function. In the second case, it is assumed that the rate of growth of employment is a decreasing function of labor productivity (so called post-Malthusian growth path).
The capital labor ratio and labor productivity with logistic growth path of the number of workers are defined by certain functions composed of hypergeometric function of Gauss. When we consider post-Malthusian growth path of employment, solution of the Solow equation depends on the value of the parameter α (production elasticity with respect to capital) – it may have no, one or two non-trivial steady-states.
In performed numerical simulations, we calibrated elasticity of production with respect to capital at a level equal to 0.68216. In all variants of simulated investment rates, the standard, logistic and post-Malthusian trajectory of employment, labor productivity grows to a certain asymptote. Asymptotes of labor productivity for the logistic and post-Malthusian trajectory are located at a similar (slightly higher for logistic trajectory) level. Both are located far higher than the asymptotę of labor productivity function in the original Solow growth model.

 

Downloads

Download data is not yet available.

References

Barro R.J., Sala-i-Martin X. (2004) Economic Growth, MA: MIT Press, Cambridge.
Google Scholar

Boucekkine R., Ruiz-Tamarit J.R. (2004) Special Functions for the Study of Economic Dynamics: The Case of the Lucas–Uzawa Model, „CORE Discussion Paper”, nr 84, http://dx.doi.org/10.2139/ssrn.688904 .
Google Scholar

Boucekkine R., Ruiz-Tamarit J.R. (2008) Special Functions for the Study of Economic Dynamics: The Case of the Lucas–Uzawa Model, „Journal of Mathematical Economics”, vol. 44.
Google Scholar

Cattani E. (2006) Three lectures on hypergeometric functions, Department of Mathematics and Statistics, University of Massachusetts, Massachusetts, http://people.math.umass.edu/~cattani/hypergeom_lectures.pdf .
Google Scholar

Filipowicz K., Syrek R., Tokarski T. (2016) Ścieżki wzrostu w modelu Solowa przy alternatywnych trajektoriach liczby pracujących, referat na VI Ogólnopolską Konferencję „Matematyka i informatyka na usługach ekonomii” im. prof. Zbigniewa Czerwińskiego, Wydział Informatyki i Gospodarki Elektronicznej Uniwersytetu Ekonomicznego w Poznaniu, Poznań, 15–16 kwietnia 2016 roku.
Google Scholar

Filipowicz K., Tokarski T. (2015) Dwubiegunowy model wzrostu gospodarczego z przepływami inwestycyjnymi, „Studia Prawno-Ekonomiczne”, tom XCVI.
Google Scholar

Filipowicz K., Wisła R., Tokarski T. (2015) Produktywność kapitału a inwestycje zagraniczne w dwubiegunowym modelu wzrostu gospodarczego – analiza konwergencji, „Przegląd Statystyczny” R. LXII, Zeszyt 1.
Google Scholar

Galor O. (2005) From Stagnation To Growth: Unified Growth Theory, [w:] P. Aghion, S.N. Durlauf (red.), Handbook of Economic Growth,
Google Scholar

Guerrini L. (2006) The Solow–Swan model with the bounded population growth rate, „Journal of Mathematical Economics”, vol. 42.
Google Scholar

Isaac E., Lui F. (1997) The problem of population and growth: A review of the literature from Malthus to contemporary models of endogenous population and endogenous growth, “Journal of Economic Dynamics and Control”, vol. 21, s. 205–242.
Google Scholar

Korn G.A., Korn T.M. (1983) Matematyka dla pracowników naukowych i inżynierów, część 1, PWN, Warszawa.
Google Scholar

Krawiec A., Szydłowski M. (2002) Własności dynamiki modeli nowej teorii wzrostu, „Przegląd Statystyczny” R. XLVIII, Zeszyt 1.
Google Scholar

Lucas R. (1988) On the mechanics of economic development, “Journal of Monetary Economics”, vol. 22, s. 3–42.
Google Scholar

Malaga K. (2013) Jednolita teoria wzrostu gospodarczego – stan obecny i nowe wyzwania, wystąpienie na IX Kongresie Ekonomistów Polskich.
Google Scholar

Mankiw N.G., Romer D., Weil D.N. (1992), A Contribution to the Empirics of Economic Growth, „Quarterly Journal of Economics”, May.
Google Scholar

Prettner K. (2009) Population ageing and endogenous economic growth, “Working Paper. Vienna Institute of Demography”
Google Scholar

Prettner K., Prskawetz A. (2010) Demographic change in models of endogenous economic growth. A survey, “Central European Journal of Operations Research”, vol. 18(4), s. 593–608.
Google Scholar

Romer P. (1990) Endogenous technological change, “Journal of Political Economy”, vol. 98(5), s. 71–102.
Google Scholar

Solow R.M. (1956) A Contribution to the Theory of Economic Growth, „Quarterly Journal of Economics”, February.
Google Scholar

Solow R.M. (1957) Technical Change and the Aggregate Production Function, „Review of Economics and Statistics”, nr 39.
Google Scholar

Tokarski T. (2008) Efekty skali a wzrost gospodarczy, Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków.
Google Scholar

Tokarski T. (2011) Ekonomia matematyczna. Modele makroekonomiczne, Polskie Wydawnictwo Ekonomiczne, Warszawa.
Google Scholar

Zawadzki H. (2015) Analiza dynamiki modeli wzrostu gospodarczego za pomocą środowiska obliczeniowego Mathematica, „Zeszyty Naukowe Uniwersytetu Ekonomicznego w Krakowie”, nr 4/940.
Google Scholar

Published

2017-05-22

How to Cite

Filipowicz, K., Grodzicki, M., & Tokarski, T. (2017). Equilibrium of Solow growth model with alternative trajectories of the number of workers. Acta Universitatis Lodziensis. Folia Oeconomica, 6(326), [181]-202. https://doi.org/10.18778/0208-6018.326.12

Issue

Section

Articles