Constructing a Hoop Using Rough Filters
DOI:
https://doi.org/10.18778/0138-0680.2022.10Keywords:
hoop, rough set, rough approximations (lower and upper), rough filterAbstract
When it comes to making decisions in vague problems, rough is one of the best tools to help analyzers. So based on rough and hoop concepts, two kinds of approximations (Lower and Upper) for filters in hoops are defined, and then some properties of them are investigated by us. We prove that these approximations- lower and upper- are interior and closure operators, respectively. Also after defining a hyper operation in hoops, we show that by using this hyper operation, set of all rough filters is monoid. For more study, we define the implicative operation on the set of all rough filters and prove that this set with implication and intersection is made a hoop.
References
M. Aaly Kologani, R. A. Borzooei, On ideal theory of hoops, Mathematica Bohemica, vol. 145(2) (2020), pp. 141–162, DOI: https://doi.org/10.21136/MB.2019.0140-17
Google Scholar
DOI: https://doi.org/10.21136/MB.2019.0140-17
M. Aaly Kologani, S. Z. Song, R. A. Borzooei, Y. B. Jun, Constructing some logical algebras with hoops, Mathematics, vol. 7 (2019), p. 1243, DOI: https://doi.org/10.3390/math7121243
Google Scholar
DOI: https://doi.org/10.3390/math7121243
P. Aglianò, I. M. A. Ferreirim, F. Montagna, Basic hoops: An algebraic study of continuous t-norms, Studia Logica, vol. 87 (2007), pp. 73–98, DOI: https://doi.org/10.1007/s11225-007-9078-1
Google Scholar
DOI: https://doi.org/10.1007/s11225-007-9078-1
R. Biswas, S. Nanda, Rough groups and rough subgroups, Bulletin of the Polish Academy of Sciences. Mathematics, vol. 42(3) (1994), pp. 251–254.
Google Scholar
R. A. Borzooei, M. Aaly Kologani, Results on hoops, Journal of Algebraic Hyperstructures and Logical Algebras, vol. 1(1) (2020), pp. 61–77, DOI: https://doi.org/10.29252/HATEF.JAHLA.1.1.5
Google Scholar
DOI: https://doi.org/10.29252/hatef.jahla.1.1.5
R. A. Borzooei, E. Babaei, Y. B. J. nad M. Aaly Kologani, M. Mohseni Takallo, Soft set theory applied to hoops, Analele Universitatii Ovidius Constanta-Seria Matematica, vol. 28(1) (2020), pp. 61–79, DOI: https://doi.org/10.2478/auom-2020-0004
Google Scholar
DOI: https://doi.org/10.2478/auom-2020-0004
R. A. Borzooei, M. Sabetkish, E. H. Roh, M. Aaly Kologani, Int-soft filters in hoops, International Journal of Fuzzy Logic and Intelligent Systems, vol. 19(3) (2019), pp. 213–222, DOI: https://doi.org/10.5391/IJFIS.2019.19.3.213
Google Scholar
DOI: https://doi.org/10.5391/IJFIS.2019.19.3.213
B. Bosbach, Komplementäre Halbgruppen. Kongruenzen and Quotienten, Fundamenta Mathematicae, vol. 69(1) (1970), pp. 1–14, URL: http://matwbn.icm.edu.pl/ksiazki/fm/fm69/fm6911.pdf
Google Scholar
DOI: https://doi.org/10.4064/fm-69-1-1-14
G. Georgescu, L. Leustean, V. Preoteasa, Pseudo-hoops, Journal of Multiple-Valued Logic and Soft Computing, vol. 11(1–2) (2005), pp. 153–184, URL: http://www.oldcitypublishing.com/journals/mvlsc-home/mvlsc-issue-contents/mvlsc-volume-11-number-1-2-2005/mvlsc-11-1-2-p-153-184/
Google Scholar
P. Hájek, Metamathematics of Fuzzy Logic, Springer, vol. 4 (1998), DOI: https://doi.org/10.1007/978-94-011-5300-3
Google Scholar
DOI: https://doi.org/10.1007/978-94-011-5300-3
T. B. Iwiński, Algebraic approach to rough sets, Bulletin of the Polish Academy of Sciences, vol. 42(3) (1994), pp. 251–254.
Google Scholar
I. M. James, Introduction to Uniform Spaces, London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge (2013), DOI: https://doi.org/10.1017/CBO9780511721519
Google Scholar
DOI: https://doi.org/10.1017/CBO9780511721519
Y. B. Jun, Roughness of ideals in BCK-algebras, Scientiae Mathematicae Japonicae Online, vol. 7 (2002), pp. 115–119, URL: https://www.jams.jp/scm/contents/Vol-7-2/7-13.pdf
Google Scholar
Y. B. Jun, K. H. Kim, Rough set theory applied to BCC-algebras, International Mathematical Forum, vol. 2(41–44) (2007), pp. 2023–2029.
Google Scholar
DOI: https://doi.org/10.12988/imf.2007.07182
N. Kuroki, Rough ideals in semigroups, Information Sciences, vol. 100(1–4) (1997), pp. 139–163, DOI: https://doi.org/10.1016/S0020-0255(96)00274-5
Google Scholar
DOI: https://doi.org/10.1016/S0020-0255(96)00274-5
N. Kuroki, J. Mordeson, Structure of rough sets and rough groups, Journal of Fuzzy Mathematics, vol. 5 (1997), pp. 183–191.
Google Scholar
R. Rasoul, B. Davvaz, Roughness in MV-Algebra, Information Siences, vol. 180(5) (2010), pp. 737–747, DOI: https://doi.org/10.1016/j.ins.2009.11.008
Google Scholar
DOI: https://doi.org/10.1016/j.ins.2009.11.008
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.