Module Structure on Effect Algebras
DOI:
https://doi.org/10.18778/0138-0680.2020.17Keywords:
effect algebra, product effect algebra, effect module, topologyAbstract
In this paper, by considering the notions of effect algebra and product effect algebra, we define the concept of effect module. Then we investigate some properties of effect modules, and we present some examples on them. Finally, we introduce some topologies on effect modules.
References
[1] M. K. Bennett, D. J. Foulis, Phi-symmetric effect algebras, Foundations of Physics, vol. 25 (1995), pp. 1699–1722, DOI: http://dx.doi.org/10.1007/BF02057883
Google Scholar
DOI: https://doi.org/10.1007/BF02057883
[2] R. A. Borzooei, A. Dvurečenskij, A. H. Sharafi, Material Implications in Lattice Effect Algebras, Information Sciences, vol. 433–434 (2018), pp. 233–240, DOI: http://dx.doi.org/10.1016/j.ins.2017.12.049
Google Scholar
DOI: https://doi.org/10.1016/j.ins.2017.12.049
[3] R. A. Borzooei, S. S. Goraghani, Free Extended BCK-Module, Iranian Journal of Mathematical Science and Informatics, vol. 10(2) (2015), pp. 29–43, DOI: http://dx.doi.org/10.7508/ijmsi.2015.02.004
Google Scholar
[4] R. A. Borzooei, S. S. Goraghani, Free MV-modules, Journal of Intelligent and Fuzzy System, vol. 31(1) (2016), pp. 151–161, DOI: http://dx.doi.org/10.3233/IFS-162128
Google Scholar
DOI: https://doi.org/10.3233/IFS-162128
[5] R. A. Borzooei, N. Kohestani, G. R. Rezaei, Metrizability on (Semi)topological BL-algebra, Soft Computing, vol. 16(10) (2012), pp. 1681–1690, DOI: http://dx.doi.org/10.1007/s00500-012-0852-2
Google Scholar
DOI: https://doi.org/10.1007/s00500-012-0852-2
[6] R. A. Borzooei, G. R. Rezaei, N. Kohestani, On (semi)topological BL-algebra, Iranian Journal of Mathematical Science and Informatics, vol. 6(1) (2011), pp. 59–77, DOI: http://dx.doi.org/10.7508/ijmsi.2011.01.006
Google Scholar
[7] R. A. Borzooei, O. Zahiri, Topology on BL-algebras, Fuzzy Sets and Systems, vol. 289 (2016), pp. 137–150, DOI: http://dx.doi.org/10.1016/j.fss.2014.11.014
Google Scholar
DOI: https://doi.org/10.1016/j.fss.2014.11.014
[8] R. Cignoli, I. M. L. D'Ottaviano, D. Mundici, Algebraic Foundations of Many-valued Reasoning, Kluwer Academic-Dordrecht (2000).
Google Scholar
DOI: https://doi.org/10.1007/978-94-015-9480-6
[9] A. Di Nola, P. Flondor, I. Leustean, MV-modules, Journal of Algebra, vol. 267 (2003), pp. 21–40, DOI: http://dx.doi.org/10.1016/S0021-8693(03)00332-6
Google Scholar
DOI: https://doi.org/10.1016/S0021-8693(03)00332-6
[10] A. Di Nola, C. Russo, Semiring and semimodules issues in MV-algebras, Communications in Algebra, vol. 41(3) (2013), pp. 1017–1048, DOI: http://dx.doi.org/10.1080/00927872.2011.610074
Google Scholar
DOI: https://doi.org/10.1080/00927872.2011.610074
[11] A. Dvurečenskij, New trends in quantum structures, Kluwer Academic/Ister Science-Dordrecht/Bratislava (2000).
Google Scholar
DOI: https://doi.org/10.1007/978-94-017-2422-7
[12] A. Dvurečenskij, Product effect algebras, International Journal of Theoretical Physics, vol. 41(10) (2002), pp. 193–215, DOI: http://dx.doi.org/10.1023/A:1021017905403
Google Scholar
DOI: https://doi.org/10.1023/A:1021017905403
[13] A. Dvurečenskij, States on Pseudo effect algebras and integrals, Foundations of Physics, vol. 41 (2011), pp. 1143–1162, DOI: http://dx.doi.org/10.1007/s10701-011-9537-4
Google Scholar
DOI: https://doi.org/10.1007/s10701-011-9537-4
[14] A. Dvurečenskij, T. Vetterlein, Pseudo effect algebras. II. Group represetation, International Journal of Theoretical Physics, vol. 40 (2001), pp. 703–726, DOI: http://dx.doi.org/10.1023/A:1004144832348
Google Scholar
DOI: https://doi.org/10.1023/A:1004144832348
[15] F. Forouzesh, E. Eslami, A. B. Saeid, Spectral topology on MV-modules, New Mathematics and Natural Computation, vol. 11(1) (2015), pp. 13–33, DOI: http://dx.doi.org/10.1142/S1793005715500027
Google Scholar
DOI: https://doi.org/10.1142/S1793005715500027
[16] D. J. Foulis, M. K. Bennett, Effect algebras and unsharp quantum logics, Foundations of Physics, vol. 24(10) (1994), pp. 1331–1352, DOI: http://dx.doi.org/10.1007/BF02283036
Google Scholar
DOI: https://doi.org/10.1007/BF02283036
[17] S. S. Goraghani, R. A. Borzooei, Results on Prime Ideals in PMV-algebras and MV-modules, Italian Journal of Pure and Applied Mathematics, vol. 37 (2017), pp. 183–196.
Google Scholar
[18] M. R. Rakhshani, R. A. Borzooei, G. R. Rezaei, On topological effect algebras, Italian Journal of Pure and Applied Mathematics, vol. 39 (2018), pp. 312–325.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Bulletin of the Section of Logic
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.